A long pulse test stand for field emission cathodes and photocathodes

J.E. Coleman and M.R. Howard

Los Alamos National Laboratory, Los Alamos, NM, United States

S. Lidia

Michigan State University, National Superconducting Cyclotron Laboratory

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Outline

- Diode design
- Mechanical design, diagnostics
- Commissioning
- 25 mm cathode results
- Scanning electron microscope cathode measurements
- 15 mm cathode results
- TRAK fits to the data

Motivation: High brightness sources

- Radiography: 1-2 kA, 100 ns, >100 uC/bunch, ε < 500 mm mrad
- Light sources: 1 kA, 1 ps, >100 pC/bunch, ε < 1 mm mrad

The diode was designed in 2013 to withstand moderate field stresses on long time scales.

Peak E-field on shroud is 120 kV/cm (12 MV/m)

The mechanical design was completed in 2014 and fabrication was completed in 2015.

Optical diagnostics for measuring J and ϵ **.**

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Pulsed power testing, radiation enclosure certification, and other commitments delayed commissioning until 2020.

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

NATIONAL LABORATORY

Field emission was limited to higher voltage operations despite reliable ~400 ns pulse operation with a 25 mm cathode.

Shot 6270

6275

Poor cathode imaging setup improved for future measurements

SEM measurements of velvet cathode material.

Used sample indicates blunting of the tips: field erosion

NATIONAL LABORATORY

EST 1943

We have demonstrated reliable ~400 ns pulse operation at several voltages with a 15 mm cathode.

Shot 6525

V,I = 147 kV, 51 A

mos

BORATORY

Current turn on delay is reduced as field increases from 40 to 85 kV/cm

6530

187 kV, 77 A

6535

219 kV, 119A

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

6525

600

5 mm

6580

6580

250 kV, 164 A

20 m

We have demonstrated reliable <u>pulsed power operations</u> at several pulse widths with a 15 mm cathode.

Cathode emission

J(x,y), z = 14.3 cm

We are currently deploying multiframe & streak imaging cameras to study these stochastic phenomena.

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

TRAK simulations indicate the cathode recess and AK gap are "virtually" decreased by 2 mm in order to match the measured current.

Conclusion

- LANL has a platform where field & "hardened" photo emitters can be tested
 - Long pulse 0.3-2.6 us, low field < 10 MV/m
 - Higher pressure vacuum 10⁻⁷-10⁻⁸ torr
- We have a good static, theoretical model of the emission from our system.
- We have a stockpile of low work function field emitters to test
 - We would like to minimize surface plasma growth and ohmic heating effects
- We are looking for suggested initial candidate "hardened" photo emitters
- We are working on developing a photogating scheme
- We are interested in collaborations, graduate students & postdocs

131030 New cathode design

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

The pulsed power system consists of a 22 Ω Pulse Forming Network (PFN) Marx and crowbar.

DARHT Axis-1 diode and emission process

