

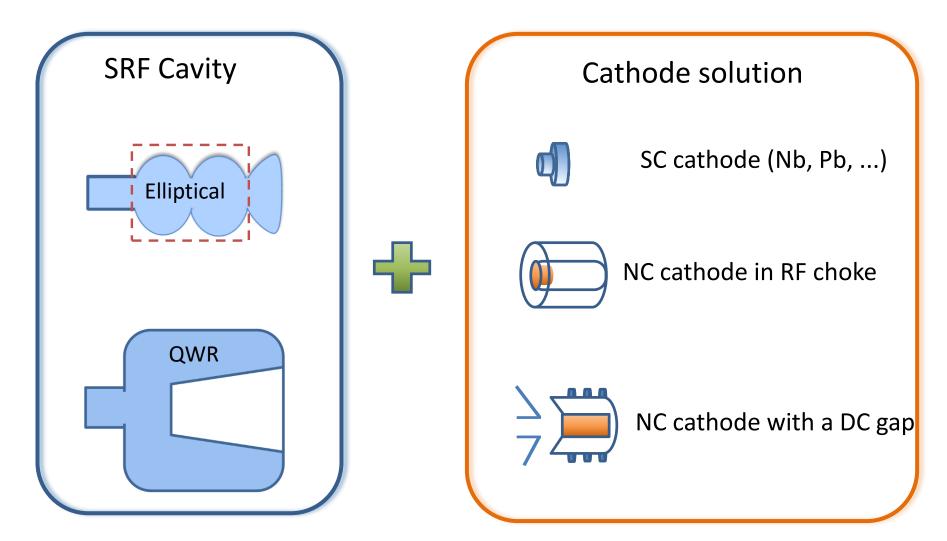
Recent progress on advanced photocathodes for SC RF guns

Rong Xiang Photocathode Physics for Photoinjectors, Nov. 10-12, 2021 r.xiang@hzdr.de

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Outline

- 1. Introduction
- 2. Metal photocathodes in SRF Guns
- SC cathode: Pb layer on Nb
- SC cathode: Nb cathode with plasmonic enhancement
- NC cathode: Cu, Mg
- 3. Semiconductor photocathodes in SRF guns
- Cs₂Te
- K₂CsSb (BNL, KEK, PKU, HZB)
- GaAs, GaN



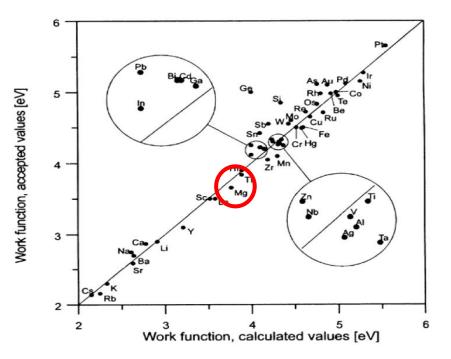
Rong Xiang I HZDR

1. Introduction

Basic SRF gun structures

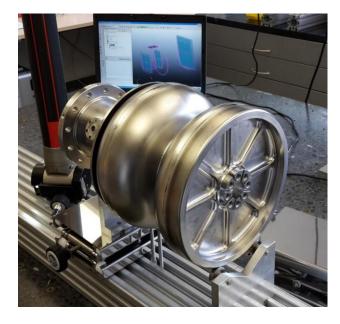
1. Introduction

General requirements for photocathode in photo injectors


- QE, lifetime, thermal emittance, response time
- particle free, smooth surfaces, adhesive feature
- low dark current

Specially for SRF guns:

- properties at cryogenic temperature thermal conductivity, thermal expansion,...
 (SC) transition temp., critical magnetic field, ...
- Multipacting issue: secondary electron yield
- heat load: laser heating, RF power deposition


Robust and "Clean" cathode for SRF guns

Metal	QE	φ (eV)
Cu	10 ⁻⁵ - 10 ⁻⁴	4.6
Mg	10 ⁻⁵ - 10 ⁻³	3.6
Nb	10 ⁻⁶ - ?	4.3
Pb	10 ⁻⁶ - 10 ⁻³	4.25

Lide, D. R.. Properties of Solids, in: *CRC Handbook of Chemistry and Physic, Internet Version 2005*. Boca Raton, FL: CRC Press; 2005, P. 124; S. Halas, Materials Science-Poland, Vol. 24, No. 4, 2006

SC photocathode: Pb layer on Nb

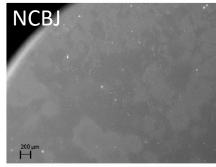
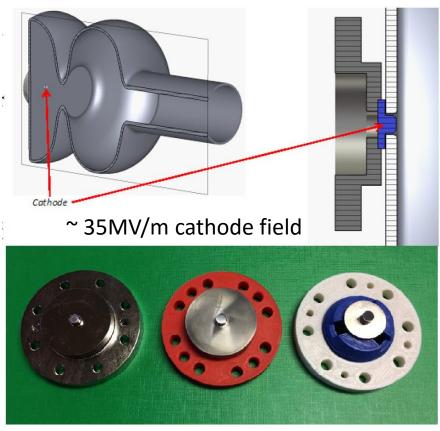


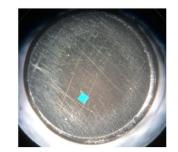
Figure 3: SEM image of a Nb-Pb photocathode with 2 μm Pb film with spherical extrusions.

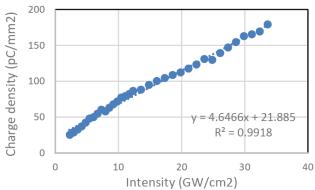

Status: in developing,

- ✓ QE reached 2.7 x 10⁻³ @ 213 nm
- Waiting for test in gun
- 1. Pb coating on Nb plug
- 2. cleaning after cathode insertion in a clean room
- 3. cathode particles (lead) should not heat and quench the cavity
- 4. Difficult for exchanging the cathode
- \Rightarrow only reasonable with lifetime above 100 days

courtesy of E. Vogel, DESY, Germany

J. Lorkiewicz et al., SRF2019, MOP004; Vacuum, Volume 179, September 2020, 109524


SC cathode: Nb cathode with plasmonic enhancement


RadiaBeam/Jlab SRF gun

Status: in developing

- QE ~ 1.4e⁻⁵ @ 1030 nm
- Waiting for more results

single crystal Nb pucks with Nano-Patten

4-photon emission process @1030nm, RT

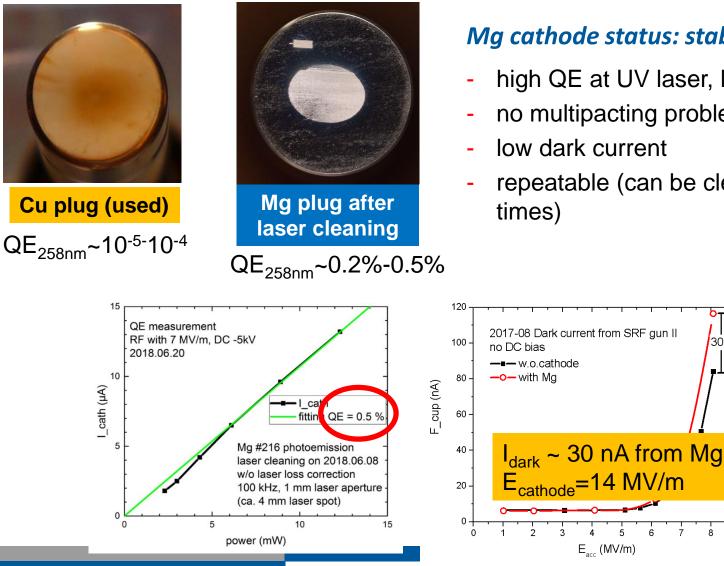
F.E. Hannon, et al., IPAC2019, TUPTS069, Melbourne, Australia

NC photocathode: Mg, Cu

Parameter	Operation Value	He port
Beam energy	4.5 MeV	
Gradient E _{acc}	8 MV/m	He vessel
Bunch charge	0 - 250 pC	SC solenoid
Beam rep. rate	25-250 kHz	
Pulse width (rms)	2.3 ps rms in Gauss	UV
Transv. emittance	2-15 mm.mrad	e
Cathode field	14 MV/m	main coupler HZDR SRF gun
Dark current	60 nA	

Highlight:

2014 successful commissioning with Cu


2019 - 2020 stable operation with Mg ~ 1760 h beam time, ~ 57 C charge

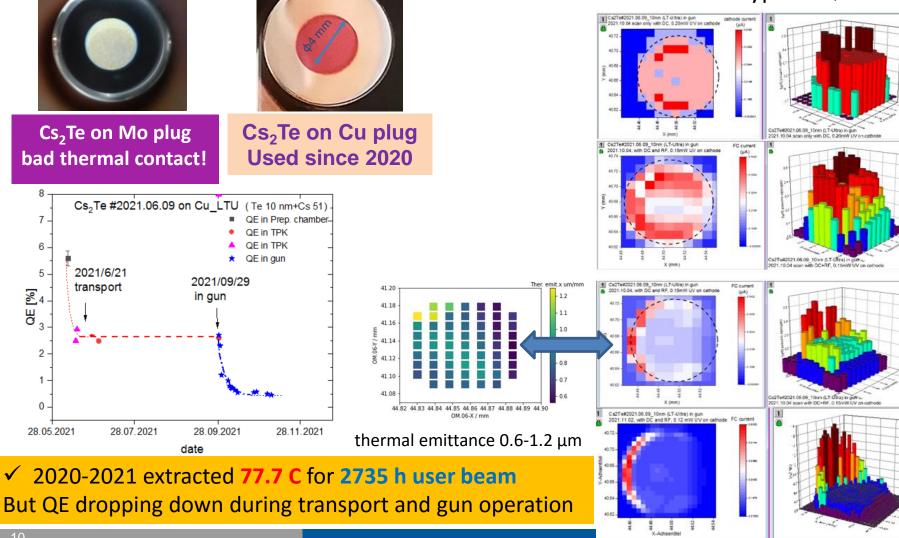
J.Teichert et al. PRAB 24, 033401 (2021)

Member of the Helmholtz Association Rong Xiang I HZDR

2. Metal photocathodes in SRF Guns NC photocathode: Mg, Cu

Mg cathode status: stable operation

- high QE at UV laser, long life time
- no multipacting problem
- repeatable (can be cleaned several


30nA

e Helmholtz Association Rong Xiang I HZDR

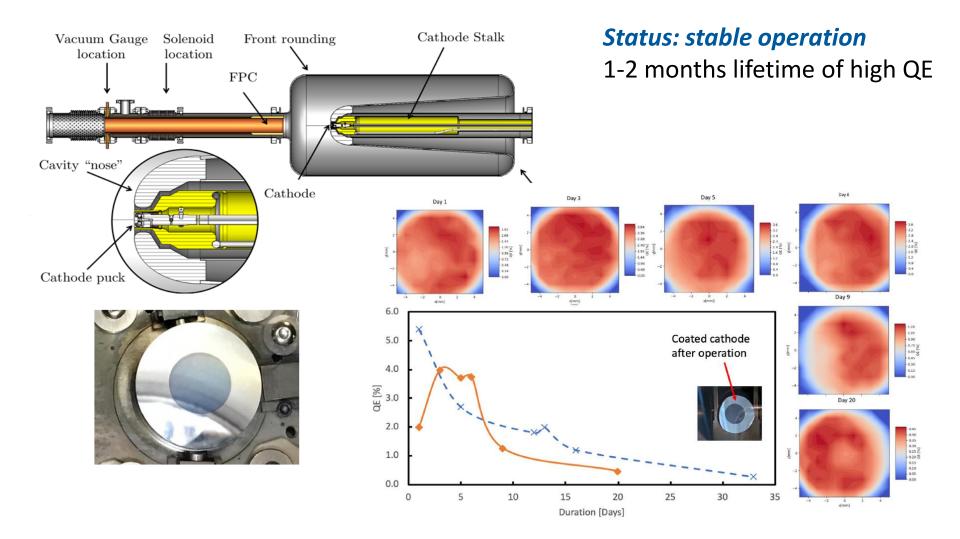
Cs₂Te for HZDR SRF guns

2-3 months life time with typical QE $\sim 1\%$

Rong Xiang I HZDR

 \checkmark

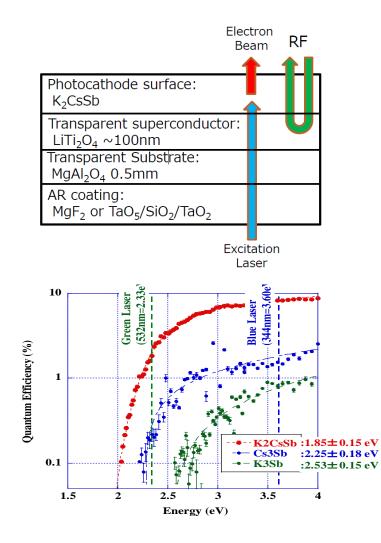
Green photocathodes: bi-alkali antimonide photocathodes


Cathode	Typical wavelength (nm)	QE @ room Temp.	E _G +E _A (eV)	Expected thermal emittance (µm/mm)
Cs ₂ Te	264	0.1	3.5	0.9
Cs ₃ Sb	432	0.15	1.6+0.45	0.7
K ₃ Sb	400	0.07	1.1+1.6	0.5
Na₃Sb	330	0.02	1.1+2.44	0.4
Na ₂ KSb	330	0.1	1+1	1.1
K ₂ CsSb	543	0.1	1+1.1	0.4

D.H. Dowell et al., NIMA 622, Pages 685-697 (2010)

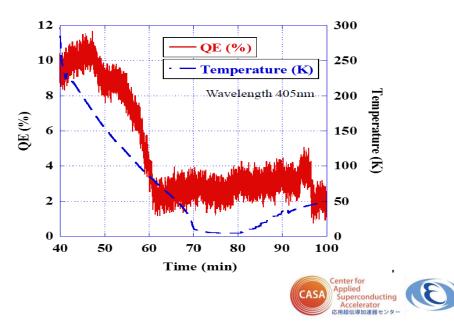
- ✓ Good choice for easier drive laser, high QE and low thermal emittance
- More sensitive than Cs₂Te

11

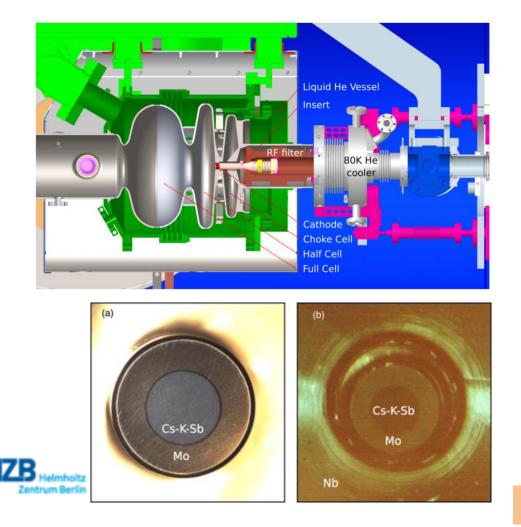

3. Semiconductor photocathodes in SRF guns K₂CsSb on Ta plug for BNL 113MHz SRF gun

Wang, E., Litvinenko, V.N., Pinayev, I. et al. Sci Rep 11, 4477 (2021).

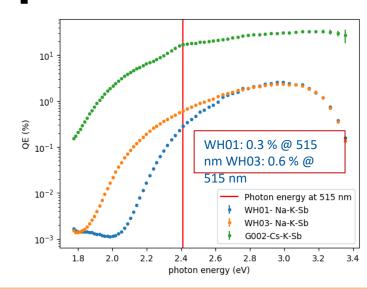
12


KEK: K₂CsSb on transparent superconductor

T.Konomi et al., ERL17, MOIACC002

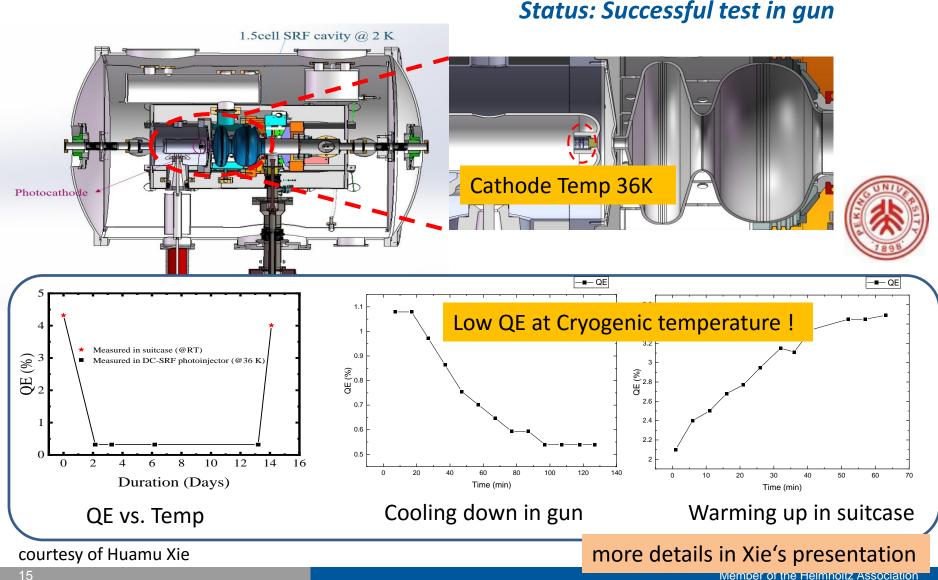

Status: in developing

- Cathode rod is also cooled by 2K LHe.
- K₂CsSb photoemitter on SC substrate
- Laser from backside
- QE was decreased during cooling


Member of the Helmholtz Association

HZB: K₂CsSb on Mo plug

Status: in developing


- ✓ Successfully prepared in lab
- ✓ transfered into gun
- thermal load study is going on....
- alternative Na-K-Sb is in study

More details in poster of Sonal Mistry

M. Schmeißer et al., Phys. Rev. Accel. Beams 21, 113401; J. Kuehn et al., doi:10.18429/JACoW-SRF2019-TUP100

PKU: K₂CsSb on Mo plug

Rong Xiang I HZDR

III-V semiconductor GaAs, GaN

Is the polarized SRF gun possible? !

2010 E. Wang studied GaAs in 1.3GHz SRF gun.

2021 new plan in BNL 113MHz SRF gun.... Waiting for more progress....

GaN status: in developing GaN study at HZDR, QE > 10% @310nm GaN on sapphire, frontside treatment 12 500 °C 11 400 °C 10 QE [%] 2 3 More details in J. Schaber's Poster

E. Wang, BNL-94159-2011-CP

I.Petrushina et al., <u>https://doi.org/10.18429/JACoW-IPAC2021-WEPAB138</u>

J. Schaber er al., Verhandlungen der Deutschen Physikalischen Gesellschaft; ISSN 0420-0195

16

4. Summary and outlook

 Proper cathode solution is a key to the successful gun operation various solutions of cathode integration (cold or warm)
NC photocathodes proved in gun
Waiting for results of SC photocathodes in gun

Both metallic and semiconductor cathodes can be safe for SRF guns
HZDR & BNL for routine operation, PKU & HZB for gun test

– Technical know-how:

heat load, thermal contact, suppressing multipacting, vacuum during transport and operation, ...

Theoretical understanding and full characterization:
QE & intrinsic emittance vs. temperature & operation

If I miss any information or there is any error in the slides, please contact me <u>r.xiang@hzdr.de</u>