

Molecular beam epitaxy of Cs₃Sb: a single crystalline visible light photocathode

Alice Galdi

Department of Industrial Engineering Università degli Studi di Salerno (Italy) CLASSE, Cornell University

Maxson group

Arias group

Shen group

Hines group

- Background & Motivation
 - –Why study Cs₃Sb?
 - –Deficits of Cs_3Sb thin films
 - -Motivation for epitaxial films
- Growth of Epitaxial Cs₃Sb
 - -In operando characterization (RHEED)
 - -Sample growth: solid phase epitaxy
- In situ Characterization
 - -XPS
 - -Quantum Efficiency
 - -ARPES
- Conclusions and Future Directions

in session E

Drawbacks: reactive, disordered

A. Galdi, et al. The Journal of Chemical Physics 153,144705 (2020) A Galdi, et al. Applied Physics Letters 118 (24), 244101 Why does this matter for applications? Because both heterogeneity enhaced by oxidation and roughness degrade MTE (besides QE degradation in poor vacuum)

 $\Delta MTE = 25 meV$ @ 10 MV/m compare to measured: 42 meV@300K 15meV@90K

Measured surface and surface potential of a Cs₃Sb photocathode G. S. Gevorkyan, PRAB **21**, 093401 (2018)

Epitaxy is the growth of a crystal layer with one or more well-defined orientations with respect to an underlying crystal seed layer (usually a single crystal substrate)

Single domain films would allow:

- Roughness control
- Orientation control \rightarrow surface potential control
- Measurements of intrinsic properties
 (optical constants, band structure, intrinsic MTE...)
 - Choose the method: MBE
 Soloct suitable substrates
 - 2) Select suitable substrates
 - 3) Identify suitable growth conditions

geometric similarity+chemistry+dynamics

Previous results

Our work builds on many experimental results obtained via *in-operando* characterization of the growth of alkali antimonide thin films with different techniques.

Reflection High Energy Electron Diffraction

(RHEED)

Sample

15kV e⁻gun

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

PARADIM Thin Film User Facility

- Molecular Beam Epitaxy System
 - In Operando high energy electron diffraction (RHEED)
 - $P_{base} = 2x10^{-9}$ torr
- Sample Transfer System
 - In Situ Quantum Efficiency Station (biased pickup coil)
 - $P_{base} = 1 \times 10^{-9} \text{ torr}$
- ARPES/XPS System
 - Scientia DA30 electron analyzer
 - Fermi Helium Plasma discharge lamp
 - Specs XR50 Al/Mg X-ray source

PARADIM Thin Film User Facility

- Molecular Beam Epitaxy System
 - In Operando high energy electron diffraction (RHEED)
 - $P_{base} = 2x10^{-9}$ torr
- Sample Transfer System
 - In Situ Quantum Efficiency Station (biased pickup coil)
 - $P_{base} = 1 \times 10^{-9} torr$
- ARPES/XPS System
 - Scientia DA30 electron analyzer
 - Fermi Helium Plasma discharge lamp
 - Specs XR50 Al/Mg X-ray source
 - $P_{base} = 7x10^{-11} torr$

Reflection High Energy Electron Diffraction (RHEED)

Information provided by RHEED

Single crystal k_{out} k_{in} Ф

By rotating the sample around its surface normal, we intersect different sets of reciprocal space rods

- Real-time
- Sub-ML sensitivity
- Qualitative probe of surface roughness and crystallinity

Single crystal High coherence

Film Reduced coherence Roughened surface

Film Polycrystalline domains/impurities

The experiment

Typical photocathode growth: Photocurrent monitored Quantum efficiency oriented

Our growth method: RHEED monitored Structure oriented

Growing with structure in mind

Growing with structure in mind

Growing with structure in mind

Temperature study

- <u>Low</u> Deposition temperature to take advantage of improved Cs sticking coefficient
- <u>High</u> temperature Cs anneal to improve crystallinity

This trick is well known in both semiconductor and oxide thin film growth, for example:

- Ge doping of Silicon films (reduced interdiffusion)
- Low Temp GaAs (reduced Arsenic precipitation)
- BaTiO₃ / SrTiO₃ on Silicon (oxides on oxygen sensitive substrates)

<u>M. Twigg et al. APL **63** (1993)</u> <u>C. Hwang et al. JAP **77** (1995)</u> <u>F. Niu, B. Wessels, JVST B, **25** (2007) Meier et al. J. Crystal Growth **294** (2006)</u>

It is epitaxial

It really is Cs₃Sb

In-situ XPS analysis Mg K-alpha

C. W. Bates, et al. Thin Solid Films 69, 175 (1980)

It really is Cs₃Sb

C. W. Bates, et al. Thin Solid Films 69, 175 (1980)

H has enhanced efficiency at 650 nm and small thickness

Grey line and dots represent the data from a codeposited Cs₃Sb sample grown by photocurrentmonitored codeposition in Newman laboratory. The thickness is estimated by the nominal deposited Sb thickness.

First measured ARPES on Cs₃Sb

- We successfully deposited epitaxial Cs₃Sb (100) films on 3C-SiC (100) substrates
- XPS measurements well reproduce literature data on Cs₃Sb (including ours)
- Ultrathin samples (<10 nm) have >2% QE at 532 nm
- We observe enhnaced QE at 650 nm on our best epitaxial sample
- ARPES measurements unveil for the first time the Cs₃Sb band structure
- DFT band strucure calculations show good agreement with measurements, but significant bandwidth discrepancy indicates that strain and intrinsic instabilities of the Cs₃Sb structure may play a role

Future work

Meet **PHOEBE**: **PHO**tocathode **E**pitaxy and **B**eam **E**xperiments laboratory

First epitaxial Cs₃Sb sample grown in **PHOEBE-MBE**

- MTE measurements on epitaxial Cs₃Sb samples
- Epitaxial growth of other alkali antimonide compounds
- Study of strain effects on different substrates
- Photocathode heterostructures

Backup slides

Information provided by RHEED

Single crystal **k**_{out} k_{in}

Fiber texture

Textured film

No rotation dependence if the texture axis is out-ofplane (uniaxial) Rotation dependence if the texture axis is inplane (biaxial)

Epitaxial Relationship

Higher Growth Temperature

- Cs-Sb co-deposition on SiC substrates
 - -Cs:Sb ratio = 6:1 (as measured by Quartz Crystal Microbalance)

