Photocathodes at FLASH and European XFE

<u>Pavel Juarez</u>, Sven Lederer, Siegfried Schreiber & Frank Brinker (DESY) Laura Monaco & Daniele Sertore (INFN – Milano, LASA)

> Photocathodes Physics for Photoinjectors Workshop 10th - 12th November, 2021 SLAC

FLASH – The Free-Electron Laser in Hamburg (Germany)

FLASH Layout 2021

FLASH: the first soft X-ray FEL user facility operating two undulator beamlines simultaneously

European XFEL

Overview

- Laser driven RF-gun
- 3 bunch compressors
- 97 1.3 GHz superconducting accelerator modules
 - Maximum beam energy 17.5 GeV
- Up to 600 kW beam power

- Three variable gap undulators
 - SASE1 and SASE2
 - 175 m magnetic length
 - 0.05 0.4 nm wavelength (25 keV 3 keV)
 - SASE3
 - 105 m magnetic length
 - 0.4 4.7 nm wavelength (3 keV 0.26 keV)

4th Generation light sources High brightness electron injectors

Photonics 2015, 2, 317-341; doi:10.3390/photonics2020317

open access photonics

ISSN 2304-6732 www.mdpi.com/journal/photonics

Review

On the Importance of Electron Beam Brightness in High Gain Free Electron Lasers

Simone Di Mitri

Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163,5 in Area Science Park, 34149 Basovizza, Trieste, Italy; E-Mail: simone.dimitri@elettra.eu; Tel.: +39-040-375-8778

Received: 4 March 2015 / Accepted: 24 March 2015 / Published: 27 March 2015

Abstract: Linear accelerators delivering high brightness electron beams are essential for driving short wavelength, high gain free-electron lasers (FELs). The FEL radiation output efficiency is often parametrized through the power gain length that relates FEL performance to electron beam quality at the undulator. In this review article we illustrate some approaches to the preliminary design of FEL linac-drivers, and analyze the relationship between the output FEL wavelength, exponential gain length and electron beam brightness. We extend the discussion to include FEL three-dimensional effects and electron beam projected emittances. Although mostly concentrating on FELs based upon self-amplified spontaneous emission (SASE), our findings are in some cases highly relevant to externally seeded FELs.

Keywords: free electron laser; gain length; electron beam brightness

High Brightness Electron Injectors for 4th Generation Light Sources

LECTURE 1: INTRODUCTION AND MOTIVATION

DAVID H. DOWELL STANFORD LINEAR ACCELERATOR CENTER.

ABSTRACT. The objective of this lecture is to justify the Importance of injectors for the new generation of light sources based on Free Electron Lasers. This is done from both technical and economic points of view. The evolution of injector technology and the improvement in beam quality over the years is presented.

1. Introduction

The advancement of FEL-based light sources has been made possible in large part by the development of brighter electron sources due to an ever improved understanding of charged particle optics. The importance of low-emittance can be demonstrated by evaluating the ratio of normalized emittance to beam energy required for a FEL to operate at a given wavelength, FEL, as given by the following relation,

(1)

 $\frac{\epsilon_N}{\gamma} < \frac{\lambda_{FEL}}{4\pi}$

Where ϵ_N is the normalized emittance and γ is the reduced beam energy. Thus, it is possible for an FEL to operate at any beam emittance provided the energy is high enough to satisfy this condition. However this is done at great expense, especially for the new x-ray devices being constructed and proposed.

FLASH photoinjector FLASH – transfer system

European XFEL photoinjector European XFEL – transfer system

- System 100 % compatible to FLASH
- Improvements
 - Easier alignment between chambers (rails)
 - Improved visibility in the central chamber by means of a side view port
 - Positioning of the pincer much easier
 - Rails exchangeable

Cathodes for FLASH & EuXFEL

Cathode Plug Comparison

- Original INFN cathode plug design, used at European XFEL and FLASH
- For comparison, new INFN/Fermilab cathode plug design
 - used e.g. at APEX-gun @ LBL, CLARA @ STFC Daresbury, LCLS II @ SLAC, REGAE and SINBAD @ DESY
- Differences only in the front region, therefore
 - 100 % compatibility in preparation and transfer systems

Plugs fabrication and polishing

Done at DESY in Hamburg

- Mo-Plugs are produced at DESY Hamburg
- Polishing recipes for different materials and designs
- Reflectivity at 532 nm around 60 %
- Surface-roughness Ra ~ 20 to 30 nm

Cs₂Te Photocathodes

DESY deposition system // LASA's recipe

- INFN-Milano and LASA deposition system design
- Assembled by LASA in close collaboration with DESY
- All components are 100 % compatible to the Milano system

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee				
REVIEW OF THE PRODUCTIO	N PROCESS OF TTF AND PITZ			
PHOTOCA	ATHODES			
D. Sertore [*] , P. Mici	helato, L. Monaco,			
INFN Milano – LASA, I-	20090 Segrate (MI), Italy			
S. Schreiber, DESY Hamburg, Germany	<pre>/ - J. H. Han, DESY Zeuthen, Germany</pre>			
A. Bonucci, SAES Getters	S.p.A., Lainate (MI), Italy			
Abstract	Many of the data presented in this paper are available			
In the present article, the production process of the	online on a web-based database [2], where cathode			
photocathodes for the TESLA Test Facility (TTF) at	parameters and performances are archived.			
DESY Tenther (PTZ) is reviewed in order to highlight	PREPARATION SYSTEM			
key elements for the final photocathode performances.	The preparation system consists of a UHV chamber			
Since the first photocathode production in 1998, we have	whose base pressure is few 10^{10} mbar. The pressure			
continuously collected relevant parameters of the cathode	during cathode preparation reaches the low 10° mbar			
plues and deposition process. These data are now	range. The chamber is equipmed with a Residual Gas			

Analyzer for probing the gas desorption during cathode preparation. A CF63 sapphire viewport allows the cathode illumination for photocurrent measurements. The sources for Te and Cs evaporation are hosted on a frame

critically analyzed in view of an optimization of the photocathode performances for the next generation of INTRODUCTION

- Plug is heat to 450 °C then kept to 120 °C
- Tellurium source starts

high brilliance sources.

- Rate of 1 nm/min ~ 10 nm thickness
- Followed by Caesium source
 - Rate of 0.5-1.0 nm/min
 - Until the OE maximum is reached
- Photocurrent monitored during the process
- The cathode is cooled down to room temperature after deposition
- QE measured at 254 nm in its transport box

Cs₂Te Photocathodes

DESY deposition system // LASA's recipe

- Mo Cathode 722.1 polished and inserted in the system
- Cs₂Te deposition

Cathode's transport box

From Hamburg to PITZ and Milano to Hamburg

- Portable transport box
- 3 different designs boxes that are available to serve several facilities
- Powered through a DC/DC converter by a car battery
- The vacuum is in the low 10⁻¹⁰ mbar range
- The vacuum level is monitored continuously
- The 4 cathodes stored can stay alive for a long time

QE measurement procedure At FLASH photoinjector

- Laser No. 2, 1 MHz, 30 Bunches, flat train with apertures 1.0, 1.2 and 2.0 mm
- Gun phase scan with max 200 pC
- Gun phase to 38 deg off zero
- Different laser apertures
- Laser energy measured by
 - Calibrated joulemeter (FLASH)
 - Cross-calibrated photo diode (European XFEL)
- Transmission of vacuum window and reflectivity of in-vacuum mirror taken into account
- QE is obtained from linear fit in not space charge dominated regime (independent from laser spot size for homogeneous cathodes)

QE map measurement procedure At FLASH photoinjector Cathode 105.2

INFN	TTF	Pho	toca	athod	les Da	ta	base	
	Photocathode # 105 .2 Datasheet							
Boxes ries	This is the 2 nd cathode on plug number 105. The cathode is a Cs ₂ Te film, prepared in date 06/06/2013 .							
ens	Physical Measurements History of the QE measurements performed on this cathode.but no dark current measurements yet.							
Box DESY	Measureme	nt Value	Date	Location	E acc [MV/m]	Iris	RF Phase	
Box FNAL	CW QE [%]	11,3	06/07/20	I3 LASA				
Box LBNL rations	History of the History of the and this catho	he plug de de pos	before	deposition med between 8/2013).	n Iast de positio	n (30	0/03/2007)	
des	Date	Person		Operation				
	11.03/2010	Paolo Michelato		BCP				
	22/05/2013	Laura M	lonaco	Lapping (automatic)				
	22/05/2013	Laura M	lonaco	R @ 543 nm [%] = 56.9				
	23/05/2013	Laura Monaco		Cleaning				
nsfers	23/05/2013	Daniele Sertore		Loading in preparation chamber (LASA)				
n Lifetime	27/05/2013	Laura M	onaco	Heating to 200°C				

- Laser No. 2, 1 MHz, 30 Bunches, flat train with 100 um aperture -> 80 um sigma size
- Gun phase scan with max 200 pC
- Gun phase to 38 deg off zero

28-Jul-2021, QE=5.89 %

23-Mar-2021, QE=8.90 % 11-May-2021, QE=6.54 % 24-May-2021, QE=6.44 %

07-Sep-2021,

3 8.5 4 4.6 6 5.6 6 6.5 7 7.6 x position [mm]

23-Mar-2021, QE=8.90 %

QE map measurement At FLASH photoinjector Cathode 105.2

The idea is to have the laser on the centre of the vacuum mirror while being at the edge of the cathode, this to compare if QE at the edges is actually low

23-Mar-2021, QE=8.90 % home/ttflinec/date/OF/CathodeScen/2021-03-23T202446-OFman.da vme/ttflinec/date/QE/CathodeScen/2021-03-23T180257-QEman.de/ /home/ttflinac/data/QE/CathodeScan/2021-03-23T195241-QEmap.dat /home/ttflinac/data/QE/CathodeScan/2021-03-23T193730-QEmap.da 3 3.5 5.5 6.5 -2.5 -2 -15 -1 -0.5 0 0.5 1 1.5 2 2.5 x position [mm] x position [mm] extreme movement extreme movement horizontally vertically

Current photocathode lifetime FLASH cathodes comparison

- Cathode #73.3 Operated from Feb-2015 to Dec-2018 for **1413 days**
- Cathode # 105.2 **Operational since** Dec-2018 until today. With 1058 days

FLASH cathode 105.2

FLASH -

Both cathodes were produced at LASA

DESY. P. Juarez Photocathodes Physics for Photoinjectors Workshop 2021

3 3.5 4 4.6 6 5.5 6 8.6 7 7.5 xposition[mm]

8.5 4 4.5 5 5.5 0 x position Immi

4.6 6 5.5 6 6.5 7 7.5 x position Immi

Cathode life time at FLASH

Cathode 105.2

- Cathode prepared 03-Jul-2013 at INFN-LASA
- In operation since 18-Dec-2018
- Operation time of 1058 days
- Total charge extracted 23.3 nC

Cathode life time at European XFEL

Cathode 680.1 - Previous one

- Cathode prepared 01-Sep-2015 at DESY
- Operation <u>record</u> time of 1452 days (previous one)
- Total charge extracted 32.2 nC

Cathode life time at European XFEL

Cathode 681.1 - Current photocathode

New deposition system at DESY - LINAC III was

New characterisation system Blue Lab at DESY

- Building a characterisation system (XPS and AES).
- Build an electron transverse momentum spectrometer. (Grant in progress)
- Investigate green cathodes in collaboration
 with LASA PITZ

- Cathode handling and transfer at FLASH and European XFEL works reliable but is continuously improving.
- At FLASH and European XFEL currently no cathode's life-time issues of Cs₂Te photocathodes
- Cs₂Te fits well for FLASH and European XFEL as a user facility with its high QE and long lifetime
- Collaboration with PITZ and INFN-LASA in order to investigate green cathodes

Questions?