
Metal cathode studies in the high gradient RF gun at PITZ

Au cathode

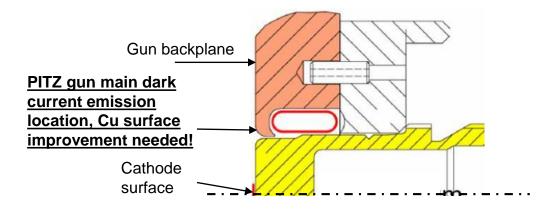
Cu plug

H. Qian*, Z. Aboulbanine, G. Adhikari, N. Aftab, P. Boonpornpras, J. Good, M. Gross, A. Hoffmann, C. Koschitzki, M. Krasilnikov, A. Lueangaramwong, O. Lishilin, A. Oppelt, R. Niemczyk, F. Stephan, G. Shu, T. Weilbach

DESY, Zeuthen, Germany

Sven Lederer
DESY, Hamburg, Germany

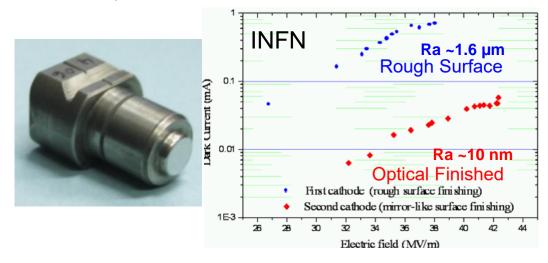
Reza Valizadeh STFC Daresbury Laboratory, UK


Why metal cathode studies at PITZ?

Thermal emittance and field emission

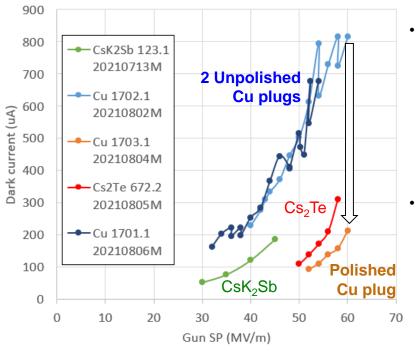
- Photoinjector test facility at DESY Zeuthen site (PITZ)
 - An ideal test bed for semiconductor and metal cathodes
 - 60 MV/m RF gun with UHV vacuum (~10⁻¹⁰ mbar)
 - Cathode load lock system with standard INFN type plugs
 - Comprehensive cathode diagnostics in the beamline
 - QE, QE map, work function, life time
 - · Dark current, dark current imaging
 - Thermal emittance, thermal emittance map
 - Cathode response time (<100 fs resolution)

- Cu plug → emulate gun backplane field emission
 - Test surface processing with gun, expensive
 - Test surface processing with Cu plugs + dark current imaging → cheap and fast turn-around

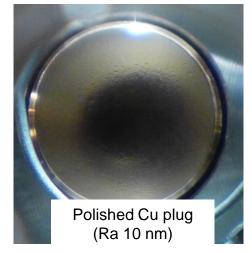


- Au cathode → low thermal emittance
 - ~0.5 eV higher work function than Cu and Mo (literature)
 - More robust against vacuum than Cu and Mo
 - Candidate for low charge or low repetition rate guns

Cu surface polishing effect

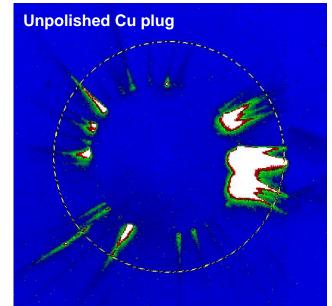

Dark current vs gradient

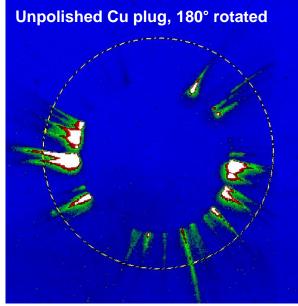
 Mo plug polishing has helped gun dark current reduction, we want to test its effect on Cu surface

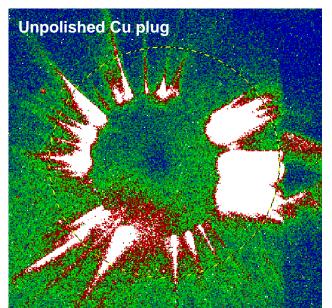

- Unpolished vs polished Cu plugs → how does surface polishing change field emission
 - Three Cu plugs are produced, similar surface quality as gun back plane (Ra ~0.25 μm)
 - One Cu plug is polished to ca. ~10 nm
 - All plugs are dry ice cleaned.

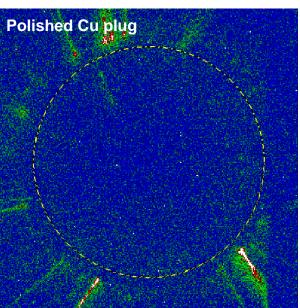
Max dark current @~0.8 m from cathode

- All three Cu plugs took >12 hr RF conditioning to 60 MV/m x 60 μs, much more difficult than standard Cs₂Te cathodes (a couple of hrs).
- Polished Cu plug reduced a factor of 4 dark current than unpolished Cu plug @60 MV/m.


Page 3

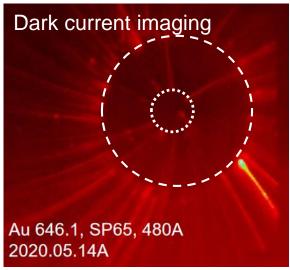

Cu surface polishing effect


Dark current imaging


- For unpolished Cu plug, strong field emitters are on the plug, proved after plug rotation
- For polished Cu plug, field emitters are from the gun backplane cathode hole area (dash circle is the gap between Cu plug and gun backplane)
- Unpolished vs polished Cu plug
 - Why do the emitters on the unpolished plug locate on a ring (R~5mm on the plug)? Not randomly distributed?
 - In Cu plug center, why no observable difference?
 - Solenoid focusing for max dark current: 500 A for unpolished, 350 A for the polished, why?
 - Plug insertion depth difference → RF focusing change?
 - Emissions came from plug corner?

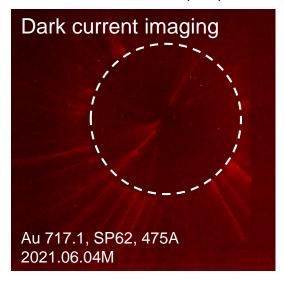
Plugs are removed from the gun for further offline measurements!

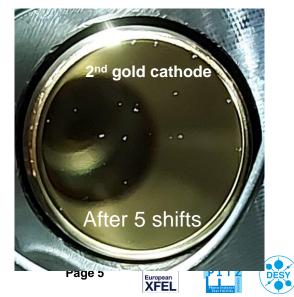
Page 4


Gold cathode thermal emittance reduction

Collaborations between DESY (Sven Lederer) and STFC (Reza Valizadeh)

- Gold cathodes fabricated at STFC by magnetron sputtering
 - 1st try: 5 mm diameter on Mo plug, 100 nm thick
 - 2nd try: full deposition on Mo plug, 150 nm thick
 - Plug temperature during deposition was lower than the 1st try to avoid crystallization
- 2nd cathode improves thermal emittance w.r.t. 1st cathode, with similar dark current and QE (~1x10⁻⁴)
 - Work function measured to be 4.3~4.2 eV for both cathodes, much lower than literature values
 - Thermal emittance reduced by a factor of ~3 @40 MV/m


Thermal emittance vs E_{emission} (MV/m) Dark current (μ A) vs E_{qun} (MV/m) 3.0 200 → 1st Au cathode Thermal emittance (um/mm) 1.5 1.5 1.0 - 1st Au (#646.1) #646.1 --- 2nd Au (#717.1) 150 -- 2nd Au cathode ---- Au (#717.1) expectation #717.1 100 х3 Dark current 50 within uncertainty. 0.5 62 20 10


#646.1 (1st)

#717.1 (2nd)

