Photocathode Physics for Photoinjectors (P3) Workshop Stanford Linear Accelerator Laboratory, November 10-12, 2021.

Connecting Band Structure to Sub-picosecond Spectral Photoemission Properties

W. Andreas Schroeder (Louis Angeloni and Ir-Jene Shan) *Physics Department University of Illinois at Chicago*

Department of Energy DE-SC0020387

Outline

- GaSb(001)
 - Excited-state thermionic emission (ESTE)
- Cu(111)
 - Sub-threshold (non-surface-state) emission form upper conduction band
- Hf(0001)
 - 'Sub-Dowell-Schmerge' spectral MTE dependence due to low m^* emission band
- Additional theoretical considerations for (quasi-)instantaneous photoemission
 - Heisenberg Uncertainty
 - Group velocity

Tunable UV radiation source

– Laser / NLO based radiation source: 3.0 – 5.3eV (235-410nm)

G. Adhikari et al., AIP Advances 9 (2019) 065305

GaSb(001): MTE measurements

- Photoemission data using UV-tunable (235-410nm) sub-picosecond (~0.5ps) laser pulses; GaSb(001) wafer

- Sub-threshold ($\hbar \omega < \phi_{(001)}$) photoemission with $\phi_{eff} = 2.2eV$
- 'Sub-Dowell-Schmerge' spectral *MTE* dependence
 - \Rightarrow Excited state thermionic emission (ESTE)
 - ... Boltzmann tail emission (above vacuum level) from hot thermalized electron distribution photoexcited into upper conduction band with a low effective mass m^*
- Additional contribution from direct one-step photoemission for $\hbar \omega > \phi_{(001)}$

J. A. Berger et al., Appl. Phys. Lett. 101 (2012) 194103; G.W. Gobeli & F.G. Allen, Phys. Rev. 137 (1965) A245

GaSb(001): ESTE

• Photoemission analyses for Boltzmann tail emission:

$$MTE \ge \left|\frac{m_T^*}{m_0}\right| k_B T_e \; ; \; \left|\frac{m_T^*}{m_0}\right| \to 1 \text{ for } m_T^* \ge m_0$$

... no recipient vacuum density of states

• Thermalized initial photoexcited electron temperature:

$$\frac{3}{2}k_B T_e = \delta E_{CB} = \frac{m_1}{m_1 + m_2} \left(\hbar\omega - E_g^{\prime}\right)$$

$$\therefore MTE \ge \frac{2}{3} \left| \frac{m_T^*}{m_0} \right| \frac{m_1}{m_1 + m_2} \left(\hbar \omega - E_g^{/} \right)$$

THUS:

$$E_g' = \phi_{\text{eff}} = 2.2 \text{eV}$$
 and $\left| \frac{m_T^*}{m_0} \right| \frac{m_1}{m_1 + m_2} \approx \frac{1}{4}$??

GaSb: Band structure

- Full relativistic calculation with spin-orbit coupling; PAW & PBE functional; No 'scissor' operator

• Energy gap inconsistencies:

$$E'_{g}(\text{expt.}) = 2.2 \text{eV}$$

 $E_{g}(\text{meas.}) = 0.67 \text{eV}$
 $E'_{g}(\text{DFT}) = 2.6 \text{eV}$
 $E_{g}(\text{DFT}) = 0.16 \text{eV}$
 $E_{g}(\text{DFT}) = 0.16 \text{eV}$

• Effective masses and predicted *MTE*:

 $\left|\frac{m_T^*}{m_0}\right|\frac{m_1}{m_1+m_2}\approx 0.21$

$$\therefore MTE \ge \frac{2}{3} \left| \frac{m_T^*}{m_0} \right| \frac{m_1}{m_1 + m_2} \left(\hbar \omega - E_g^{\prime} \right) \approx 0.14 \left(\hbar \omega - E_g^{\prime} \right)$$

... parabolic band approximation c.f. $MTE_{expt.} \approx \frac{1}{6} (\hbar \omega - E_g^{/})$

GaSb(001): Quantum efficiency

- For $\hbar \omega \le \phi_{(001)}$, *QE* increases by 1,000× as photon energy increases by 1.5eV
 - $T_{\rm e}$ increases from 7,200K to 17,000K
- $QE(\hbar\omega)$ difficult to explain by standard thermionic emission - $\phi = 4.8 \text{eV}$ (----) and $\phi = 2.6 \text{eV}$ (----)

$$QE = A (k_B T_e)^2 \exp\left[-\frac{\Phi}{k_B T_e}\right]$$

... with
$$k_B T_e = \frac{2}{3} \left(\frac{m_1}{m_1 + m_2} \right) \left(\hbar \omega - E_g' \right)$$

- Bulk emission band *E*(**p**) and DOS need to be included, as well as vacuum DOS
- Improved *QE* measurements also required
 More stable tunable UV laser radiation source currently in development

Cu(111) photocathode

- Work function: $\phi_{Cu(111)} = 4.94 \text{eV}$
- Photocathode properties:
 - Polished: Surface roughness < 10nm rms (not atomically flat)
 - Surface **not** clean ($\Delta \phi_{-O-Cu} \approx -0.4-0.5 \text{eV}$)
 - \Rightarrow No surface states AND $\phi_{eff.} \approx 4.5 eV$
- Fermi surface 'hole' in $\Gamma \rightarrow L$ direction
 - \Rightarrow Extra ≥ 0.2 eV transverse energy required for photoemission from occupied bands
 - \therefore Expect $\phi_{\text{emission}} \ge 4.7 \text{eV}$

E. Pedersoli et al, Appl. Phys. Lett. 93 (2008) 183505; www.phys.ufl.edu/fermisurface

Cu(111): Sub-threshold photoemission

- Photoemission data using UV-tunable (235-410nm) sub-picosecond (~0.5ps) laser pulses

.. An ultrafast / band structure effect

G. Adhikari et al., AIP Advances 9 (2019) 065305; G.W. Gobeli & F.G. Allen, Phys. Rev. 137 (1965) A245

Cu(111): Emission mechanism

- L-point band structure; Parabolic approximation

Emission of the Boltzmann tail (above the vacuum level) of a hot thermalized photo-excited electron distribution:

• At 'threshold': $\hbar \omega \approx 4.3 \text{eV}$

$$\Rightarrow \delta E = \frac{p_{FT}^2}{2m_{2T}} = \frac{m_{1T}\Delta_1}{m_{2T}} \approx 0.29 \text{eV}$$

$$\therefore MTE \ge \left|\frac{m_{2T}}{m_0}\right| k_B T_e = \frac{2}{3} \left|\frac{m_{2T}}{m_0}\right| \delta E \approx 150 \text{meV}$$

... **no** vacuum states and surface roughness

LEMMA:

$$\hbar \omega = \Delta_2 + \delta E \approx 4.3 \text{eV}$$
$$\Rightarrow \Delta_2 \approx 4.01 \text{eV}$$
... close !

Cu(111): Emission mechanism

- L-point band structure; Parabolic approximation

- At $\hbar \omega \approx 4.5 \text{eV} < \Delta_1 + \Delta_2 = 4.65 \text{eV}$
 - Hot electron photoexcitation limited by Fermi level
 - More lower energy electrons photoexcited
 - $\therefore \text{ Expect } \delta E_{av.} \leq 0.2 \text{ eV}$

$$\Rightarrow MTE \geq \frac{2}{3} \left(\frac{m_{2T}}{m_0} \right) \delta E_{av.} \approx 100 \text{meV}$$

- For $\hbar \omega > \Delta_1 + \Delta_2$
 - $-\delta E_{av}$ increases \Rightarrow *MTE* increases again
- For $\hbar \omega > \phi \Delta \phi_{-\text{O-Cu}} + \Delta_1 \approx 5.0 \text{eV} \ (\Rightarrow \Delta \phi_{-\text{O-Cu}} \approx 0.5 \text{eV})$
 - Direct near threshold emission from VB with low MTE
 - \therefore *MTE* reduction (**plus** *QE* increase)

Hf(0001): Band structure

- Full relativistic band structure calculation with spin-orbit coupling

For $\Gamma \rightarrow A$ emission:

- No intermediate upper band states
 ⇒ One-step photoemission
- Relatively isotropic *single* holelike emitting band state

 $m_T^* = m_z = 0.47(\pm 0.02)m_0$

$$\therefore \text{ Expect } MTE < \frac{1}{3}(\hbar\omega - \phi)$$

... dispersion of emitting band state restricts $p_{\rm T}$

Tuo Li et al., *Phys. Rev. STAB* **18** (2015) 073401; H.B. Michaelson, *J. Appl. Phys.* **48** (1977) 4729

Hf(0001): MTE measurements

– Photocathode polished to remove HfO_2 layer

• Spectral *MTE* dependence significantly 'sub-Dowell-Schmerge' $(m^* = m_0)$

AND consistent with one-step photoemission theory ($m^* = 0.47m_0$)

$$MTE \ge \left|\frac{m_T^*}{m_0}\right| \frac{\hbar \omega - \phi}{3}$$
; $\left|\frac{m_T^*}{m_0}\right| \to 1$ for $m_T^* \ge m_0$

... **no** bulk band or vacuum density of states

BUT

- Inconsistencies in work functions ...
- \Rightarrow Incomplete theoretical framework

W.A. Schroeder & G. Adhikari, New J. Phys. 21, 033040 (2019); G. Adhikari et al., AIP Advances 9 (2019) 065305

Heisenberg Uncertainty and group velocity

- Additional *required* theoretical considerations:
- (i) Finite spatial extent of $|\psi_{excited}\rangle$ due to absorption depth, electron extraction depth, etc.

 \Rightarrow Momentum width $\Delta p_z \ge \frac{\hbar}{2.\Delta z}$

- :. Convolution in **p**-space !!
 - ... significant analytical and computational issues
- (ii) Wave-packet nature of $|\psi_{excited}\rangle$
 - \Rightarrow Group velocity effects

$$\therefore \text{ Reduced } QE \text{ for } v_g = \frac{\partial E}{\partial p_z} < 0$$

... positive
$$v_g = \frac{p}{m_0}$$
 for $|\psi_{vacuum}|$

Group velocity effects

ANSATZ:

Efficient photoemission requires

(i) $p_z > 0$

(ii)
$$v_g = \frac{\partial E}{\partial p_z} > 0$$

Group velocity effects

ANSATZ:

Efficient photoemission requires

(i) $p_z > 0$

(ii)
$$v_g = \frac{\partial E}{\partial p_z} > 0$$

 $\Rightarrow \text{ Only electron-like band} \\ \text{has high } QE \text{ in } 1^{\text{st}} \text{ BZ}$

BUT

'Umklappen' allows emission ...

Group velocity effects

 Hole-like band should have higher *QE* in 2nd
 BZ than in 1st BZ

PLUS

Expect contributions to *QE* (and hence *MTE*) from multiple BZs

UIC

- Direct connection of bulk band structure to spectral photoemission properties:
 - (i) GaSb(001): Excited-state thermionic emission (ESTE)
 - Measurements consistent with $MTE \ge \frac{2}{3} \left| \frac{m_T^*}{m_0} \right| \frac{m_1}{m_1 + m_2} \left(\hbar \omega E_g^{\prime} \right)$
 - (ii) Cu(111): Sub-threshold (non-surface-state) emission form upper conduction band $-E(\mathbf{p})$ of L-point bands \Rightarrow Observed spectral *MTE* dependence
 - (iii) Hf(0001): 'Sub-Dowell-Schmerge' spectral *MTE* dependence Low m^* of hole-like emission band restricts p_T
- Further theoretical considerations:
 - (i) Heisenberg Uncertainty ...

(ii) Group velocity:
$$p_z > 0$$
 and $v_g = \frac{\partial E}{\partial p_z} > 0$ for efficient photoemission