

Alkali antimonide photocathode performance in ultrafast electron microdiffraction

Cameron Duncan and William Li Cornell University

MEDUSA

- Ultrafast Electron Diffraction (UED) is a time-resolved technique for studying materials out of equilibrium
- Conservation of six-dimensional brightness imposes a trade-off between spatial and temporal resolution in UED
- Machines that deliver 100 fs or shorter electron pulses typically produce rms transverse beamsizes 25 um or greater
- With a low MTE electron source, we form single micron size probes while maintaining 100s of femtosecond temporal resolution

Microdiffraction

 Small probes make possible the study of small samples, e.g., flakes of materials that are challenging to prepare as large single crystals

Diffraction sample, Nb₃Br₈

Beamline overview

Beamline overview

Beamline overview

Beamline overview

Beamline overview

Beamline overview

Beamline overview

Cathode

Na-K-Sb cathode grown at Cornell

- These cathodes have previously been measured to have high (percent-level) QE in the green and low (~35 meV) MTE at threshold
 - In simulation, decreasing MTE has a noticeable effect on emittance at the sample, around a factor of 2 at sub-picosecond bunches

Cathode transfer

- The vacuum in all components of the cathode transfer process is kept under 10⁻¹⁰ Torr
- Compact suitcase fits inside the beamline's lead shielding
- Our Na-K-Sb photocathodes retain QEs in the 10⁻⁴ level at 650 nm after transfer to the gun

Cathodes grown on INFN/DESY/LBNL style miniplug

Suitcase attachment

Growth chamber

Vacuum suitcase

Vacuum

- Baking out sample chamber is impractical
- Conductance aperture and NEG can between sample chamber and beamline
- Gun remains below 10⁻¹¹ Torr even with the sample chamber at 10⁻⁸ Torr.
- We've been able to use same photocathode for >800 hours of runtime

Laser setup

- We split a 1030 nm seed, generating 515 nm light for the pump and 650 nm light for the cathode
- 650 nm is chosen as it is near threshold but remains in the linear photoemission regime

Emittance

- We can measure the emittance at the sample plane with a knife edge
- <15 nm normalized emittance in x
- 9 nm normalized emittance in y
- Right in the blue rectangle

Spatial resolution

- 10 µm aperture placed just before sample (~500 electrons through)
- We characterize the size of the electron beam in two different ways
 - 1. TEM grid scan (a)-(c)
 - a. Also gives us spatial overlap with pump beam
 - 2. Direct knife edge scan (d)

Spatial resolution

Single TEM grid square

Transmission scan of TEM grid

Emittance (apertured)

- At waist, $\varepsilon = \sigma_x \sigma_{x'}$
- For the ~500 electrons passing through aperture:
 0.7 nm normalized emittance!

Bunch length

• The bunch length can be obtained by measuring the beam size along an rf deflection axis.

Gold UED

Signal S is the *relative* change in intensity *I*:

$$S = \frac{I_{hot} - I_{cold}}{I_{cold}}$$

In our experiment, $|S| \sim 1\%$

-4.5 -3.2 -1.9 -0.6 0.7 2.0 3.3 4.6 ps

tors, SLAC, November 10th-12th, 2021

Gold UED

Gold UED

Gold UED

Acknowledgements

Maxson Group

Alice Galdi

Now at U. Salerno.

Bazarov Group

Jai Kwan Bae

Now at BNL

Cornell Electron Microscopy

U. Chicago Beam Dynamics

Conclusion

- MEDUSA is an operational UED beamline running low MTE Na-K-Sb photocathodes at threshold, in the linear photoemission regime
- Low MTE enables subpicosecond, micron scale bunches with hundreds of electrons per bunch and fine reciprocal space resolution

Diffraction sample, Nb₃Br₈