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surface to enhance and linearize the applied field;
and a grating cathode with high QE at threshold
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The relative permittivity of most cathode materials is large
compared to 1, therefore g. = 1 and the eqn. reverts to the usual
expression for the Schottky potential of a single electron. 2



Total fields near the cathode surface: image + space charge + applied

The topological cathode* increases (slightly)
the emittance, lowers the cathode’s surface
field and eliminates Schottky enhancement of
the QE. Thus, there are no advantages worth
the difficulty of making such a cathode.
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The top plot shows the accelerating field vs.
distance from the cathode surface for the standard
case of a metal cathode with an image charge.

** The image charge field cancels the space-
charge field of the real disk charge when the
disk is less than 100 microns from the surface.
cathode surface field approaches that of the
applied field, 20MV/m.

+* And the difference between the edge and
center accelerating fields also is small close to

the cathode, <100microns.

The lower plot shows the total accelerating field if

the image field is removed by a meta-cathode.

% In this case, the disk space-charge field is not
canceled by image fields and the cathode
surface field is reduced by ~7MV/m below the
applied field.

% The edge-center accelerating fields is large near
the cathode surface for <100microns.



Transverse charge density caustics due to sinusoidal surface modulation

Electrons cross over a few mm from the cathode for

applied fields of 50 MV/m. Caustics occur at crossings of the rays forming a line
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Adding a spatial third harmonic flattens the enhanced field at the hilltops where the
cathode is located, and the electrons are launched from.

The enhanced, flat field region is 1.85-times the applied field, but extends only 1/k in z.
Fundamental extends 1/785=1.3mm, 3'9 harmonic extends 1/2356=0.42mm

The 20 MV/m applied field is enhanced a factor of 1.85 to 37 MV/m. reentrant mini-nosecone design
The field is flat over the photocathode’s 1 mm diameter area.
Surface Parameters:
-1-10' T T T T T T T A1=8 mm A3=2.67 mm
Applied Field: a;=0.750mm  ; — 0068 mm
Cemeo.  Eg=-20MV/m k1=785/m ks = 3k, =2356/m
-2 107 y a1k1=0.59 a3k3=0.16

a, cos kix + asz cos k3x
1 T I

.— grating cathode

-3.10"

E (Volts/m)

~4-10"

=10 —2 -1.5 -1 0.5 0 0.5 1 15 2

Exotic Cathode Design —10 ™ 0 S 10



D}

i)

iii),

Iv)

v)

*Surface waves and grating tuned photocathodes,
J.G. Endriz, Appl. Phys. Lett. 25,261(1974)  ~kq

Grating Tuned Photocathodes* give high QE at photothreshold + low emittance(?)

Tune/Adjust the grating spacing to generate backward propagating surface plasmons at a wavelength near photoemission threshold.

Coat the grating with a ~50nm layer of a low work function material like Cs2Te, K2CsSh, Ag-O-Cs,...

Photoemission at the backward propagating plasmon wavelength will have high-QE due to the plasmon excitation (higher absorption)
and the low work function of the coating as shown in Endriz and Spicer papers.
The MTE can be made very small by operating close to threshold and the cathode grating tuned for high QE at threshold.
The MTE/intrinsic emittance has not been measured for this type of cathode. Any volunteers?
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https://doi.org/10.1063/1.1655463

J.G. Endriz and W.E. Spicer, “Surface-plasmon-on
electron decay and its observation in photoemis
Phys. Rev. Lett. 24, 64(1969)
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anomalous QE vs. iiw behavior near plasmon energies:
tune angle such that QE increases with decreasing
photon energy near threshold
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Thank you for your

attention!

+** Endriz’s Grating Tuned
Cathode with high QE at
photoelectron threshold

¢ Structured/reentrant

cathode surface to enhance

and linearize the applied

field at the cathode surface

¢ Meta-cathode update

Exotic Cathode Design

Grating tuned cathodes
give high QE at photo threshold*

Adding a spatial third harmonic flattens the enhanced
field at the hilltops where the cathode is located
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