Drell-Yan and Other Tools for Proton Structure from the LHC

Lucian Harland-Lang, University of Oxford

Symposium on Fundamental Physics in Memory of Sidney Drell, SLAC, Jan 12, 2018

Motivation - the LHC

- The LHC is the most powerful accelerator ever, with unique sensitivity to Higgs sector and physics within and beyond the Standard Model.
- It is also (predominantly) a **proton-proton** collider \Rightarrow sensitive probe of **proton structure**. What do we know about the structure of the proton and what can the LHC tell us?
- As we will see the **Drell-Yan** process plays a special role in our understanding of the proton, from the early parton model to the high precision LHC.

Proton Structure and Parton Distribution Functions

Parton Distribution Functions

- First measurements of proton (sub)structure from Deep Inelastic Scattering (DIS) of lepton off a proton.
- Q: Energy of the quark/gluon collision • Understood in parton model - cross section giveneise defines define length g(x,Q): Probability of finding a gluon inside a proton, carrying a fraction x of the proton for lepton to scenteron off the proton scenteron off the proton of the proton of the proton of the proton.
 - Parton Distribution Function (PDF) at lowest order, probability to find parton (q, q, g...) in proton. Cannot (currently) calculate from first principles.

x - proton longitudinal momentum fraction.

Q - photon virtuality ~ resolution scale.

 $\sigma^{lp} \sim \sigma^{lq}(Q^2) \otimes q(x, Q^2)$

 $f(x) \otimes g(x) \sim \int \mathrm{d}y f(x) g(x/y) \;,$

Deep Inelastic Scattering

- DIS data now taken over many decades:
 - Pioneering measurement at **SLAC** established parton model.
 - State-of-the-art: combined data from both runs/experiments at HERA ep collider. High precision data \Rightarrow extract PDFs.

Q: Energy of the quark/gluon collision *G*: Energy of the quark/gluon collision Inverse of the resolution length *g(x,Q)*: Probability of finding a gluon inside the proton x of the pro

- Canenapplye PEFd faittorization to hadron-hadron collisions.
- First to be considered: lepton pair production Drell-Yan (DY).

Factorization $\Rightarrow q_{DIS}(x, Q^2) \equiv q_{DY}(x, Q^2)$

- Approach generic: apply to range of processes, both SM (DY, jets, $t\bar{t}...$) and BSM (new resonances, SUSY, Higgs...)
- → Fit the PDFs to well understood datasets (DIS, DY...) to make predictions for less well understood.

Global fits

- For LHC (and elsewhere) aim to constrain PDFs to high precision for all flavours $(q, \overline{q}, g...)$ over a wide x region.
- Perform global PDF fits to wide range of data (DIS, fixed nuclear targets with l, ν beams, hadron collider data jets, $W, Z, t\bar{t}...$).
- Three major global fitters **CT**, **MMHT**, **NNPDF**. Vary in fitting approach, data included, error evaluation...

LHL et al., Eur. Phys. J. C75 (2015) no.5 204

Precise PDFs for the LHC

• Ultimate reach of LHC limited by knowledge of PDFs.

LHC: The Future

- We are at a very **early stage** in LHC running: so far only a few percent of the final projected data sample collected.
- \rightarrow Precision requirements at the LHC rapidly increasing.

Precise Theory

 Past years has seen an explosion in calculations for LHC processes at Next-to-Next-to-Leading-Order (NNLO) in the strong couplings (~% level precision).

Thus, precision in data and theory at unprecedented level. Provides
 opportunities and challenges for PDF fitters.

Drell-Yan and the Road to High Precision

The Drell-Yan Proposal

 1970 paper - parton model prediction for lepton pair production in hadronic collisions. MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 25 May 1970)

On the basis of a parton model studied earlier we consider the production process of large-mass lepton pairs from hadron-hadron inelastic collisions in the limiting region, $s \rightarrow \infty$, Q^2/s finite, Q^2 and s being the squared invariant masses of the lepton pair and the two initial hadrons, respectively. General scaling properties and connections with deep inelastic electron scattering are discussed. In particular, a rapidly decreasing cross section as $Q^2/s \rightarrow 1$ is predicted as a consequence of the observed rapid falloff of the inelastic scattering structure function νW_2 near threshold.

$$\frac{d\sigma}{dQ^2} = \left(\frac{4\pi\alpha^2}{3Q^2}\right) \left(\frac{1}{Q^2}\right) \mathfrak{F}(\tau) = \left(\frac{4\pi\alpha^2}{3Q^2}\right) \left(\frac{1}{Q^2}\right) \int_0^1 dx_1 \int_0^1 dx_2 \delta(x_1x_2 - \tau) \sum_a \lambda_a^{-2} F_{2a}(x_1) F_{2\bar{a}}'(x_2),$$

- First numerical prediction rapid fall off with M_{ll} due to high x behaviour of PDFs $f(x \sim 1, Q^2) \sim 0$.
- Remark in opening paragraph:

called "partons." Nucleons are the "partons" of the nucleus and the "partons" of a nucleon itself are still to be deciphered. If we specify

 \rightarrow Crucial step along road to deciphering this!

 $Q^2 = x_1 x_2 s$

В

Comparisons to Data

- First data (*pN* fixed target) **overshot** parton model predictions by a factor of ~ 2. What was missing?
- The data were compared to the LO theory prediction - by late 70s full
 NLO corrections were known.
- Corrections found to be sizeable, resolving apparent discrepancy.

Group (ref.)	Beam/Target	Momentum $\left[\sqrt{s}\right]$ (GeV)	K
NA3 (27)	(p-p)/Pt	150	2.3±0.4
E537 (28)	₽̄/W	125	$2.45 \pm 0.12 \pm 0.20$
E288 (12)	p/Pt	300/400	~ 1.7
E439 (29)	p/W	400	1.6±0.3
NA3 (19)	p/Pt	400	$3.1 \pm 0.5 \pm 0.3$
CHFMNP (30)	pp	[44, 63]	1.6 ± 0.2
A ² BCSY (15)	pp	[44, 63]	~1.7
OMEGA (31)	π^{\pm}/W	39.5	~2.4
NA3 (32)	π^{\pm}/Pt	200	2.3 ± 0.5
	π^{-}/Pt	150	2.49 ± 0.37
	π^{-}/Pt	280	2.22 ± 0.33
NA10 (33)	π^{-}/W	194	2.77 ± 0.12
E326 (18)	π^{-}/W	225	$2.70 \pm 0.08 \pm 0.40$

C. Grosso-Pilcher, M.J. Shochet, Ann. Rev. Nucl. Sci. Part. 36 (1986) 1-28

→ First indication of importance of **precise theory**.

Table 1 Experimental K factor

Early Fits

- The first **global PDF fits** to include Drell-Yan data appeared in 90s (NLO theory).
- Initially fixed target, but following that the **Tevatron** as well.
- Data well fit by NLO theory, placed important constraints on proton flavour structure.

Precision Theory

- Drell-Yan first hadroproduction process computed at NNLO total cross section in early 90s.
- Predictions differential in W, Z rapidity presented decade later first of their kind. Corrections convergent, and with ~ 1% level uncertainty.
- Subsequently implemented in range of Monte Carlo generators (FEWZ, DYNNLO, MATRIX, MCFM).
 Includes full leptonic decay, in the other states of the state
- Includes full leptonic decay, with spin effects → direct
 comparison to data.

• NNLO now the **standard** for PDF fitting.

Charting the Progress

- As of today original Drell + Yan paper has 1448 citations.
- Going differential?

Massive Lepton Pair Production in Hadron-Hadron Collisions at High-Energies S.D. Drell, Tung-Mow Yan (SLAC). Jun 1970. 12 pp. Published in Phys.Rev.Lett. 25 (1970) 316-320, Erratum: Phys.Rev.Lett. 25 (1970) 902 SLAC-PUB-0755 DOI: 10.1103/PhysRevLett.25.316

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service; OSTI Information Bridge Server; SLAC Document Server; Link to Fulltext Detailed record - Cited by 1448 records 10001

Drell-Yan at the LHC

What Can Drell-Yan Tell us?

- Initial-state $q\overline{q}$ combination \Rightarrow proton flavour decomposition (DIS ~ various sums of $q + \overline{q}$). $u\overline{d}, c\overline{s} \quad (u\overline{s}, c\overline{d}) \rightarrow W^+$, $d\overline{u}, s\overline{c} \quad (s\overline{u}, d\overline{c}) \rightarrow W^-$, $q\overline{q} \rightarrow Z/\gamma^*$,
- Depending on kinematics, sensitive to u_V, d_V and/or $\overline{u}, \overline{d}$.
- If data is precise enough, sensitive to least constrained (but small) s, s
 component ⇒ sensitive to proton strangeness.

ATLAS data

- **Highest ever precision** measurement of *W*, *Z* production by the **ATLAS** collaboration at the LHC.
- Data uncertainties at the sub-% level. Statistical errors negligible completely dominated by systematics.
- Uses 7 TeV dataset taken in 2011. Understanding these systematic errors as well as possible has taken many years.

Impact

 ATLAS data precise enough to have large impact on proton strangeness - prefer larger value than global fits (some constraints from vs → lc DIS).

Going Forw

23

- The LHCb detector acceptance for p
- \rightarrow LHCb data on forward Drell-Yan pro sensitivity from low to high $10^{-4} \lesssim x \lesssim 1$.

PDFs at the LHC

LHC data for PDF determination

- LHC now producing wide range of precise data for PDF determination. Already having a **major impact** on global fits.
- **Drell-Yan** has significant role, but many other processes included, and new studies ongoing a few examples follow!

Measurement	Data taking	Motivation
Combined HERA inclusive data	Run I+II	quark singlet and gluon
D0 legacy W asymmetries	Run II	quark flavor separation
ATLAS inclusive W, Z rap 7 TeV	2011	strangeness
ATLAS inclusive jets 7 TeV	2011	large- <i>x</i> gluon
ATLAS low-mass Drell-Yan 7 TeV	2010+2011	small- <i>x</i> quarks
ATLAS Z pT 7,8 TeV	2011+2012	medium- <i>x</i> gluon and quarks
ATLAS and CMS tt differential 8 TeV	2012	large- <i>x</i> gluon
CMS Z (pT,y) 2D xsecs 8 TeV	2012	medium- <i>x</i> gluon and quarks
CMS Drell-Yan low+high mass 8 TeV	2012	small- <i>x</i> and large- <i>x</i> quarks
CMS W asymmetry 8 TeV	2012	quark flavor separation
CMS 2.76 TeV jets	2012	medium and large-x gluon
LHCb W,Z rapidity dists 7 TeV	2011	large- <i>x</i> quarks
LHCb W,Z rapidity dists 8 TeV	2012	large- <i>x</i> quarks

New datasets in NNPDF3.1

CT17p — data to be included

* Previous LHC and HERA 1 data included in CT14 will be superseded by updated Run 1 and HERA 1+2 data; adding new LHC data, especially on Z boson p_T and top quark differential distributions

• Combined HERA1+2 DIS [1506.06042] update

- LHCb 7 TeV Z, W muon rapidity dist. [1505.07024] update
- LHCb 8 TeV Z rapidity dist. [1503.00963] update
- ATLAS 7 TeV inclusive jet [1410.8857] update
- CMS 7 TeV inclusive jet (extended y range)[1406.0324] update
- ◎ ATLAS 7 TeV Z pT dist. [1406.3660] new
- LHCb 13 TeV Z rapidity dist. [1607.06495] update
- $^\circ$ CMS 8 TeV Z pT and rapidity dist. (double diff.) [1504.03511] $\,$ new
- CMS 8 TeV W, muon asymmetry dist. [1603.01803] update
- o ATLAS 7 TeV W/Z, lepton(s) rapidity dist. [1612.03016] update
- CMS 7,8 TeV tT differential distributions new
- ATLAS 7,8 TeV tT differential distributions new

MMHT (2016 fit)

	no. points	NLO χ^2_{pred}	NLO χ^2_{new}	NNLO χ^2_{pred}	NNLO χ^2_{new}
$\sigma_{t\bar{t}}$ Tevatron +CMS+ATLAS	18	19.6	20.5	14.7	15.5
LHCb 7 TeV $W + Z$	33	50.1	45.4	46.5	42.9
LHCb 8 TeV $W + Z$	34	77.0	58.9	62.6	59.0
LHCb 8TeV e	17	37.4	33.4	30.3	28.9
CMS 8 TeV W	22	32.6	18.6	34.9	20.5
CMS 7 TeV $W + c$	10	8.5	10.0	8.7	8.0
D0 e asymmetry	13	22.2	21.5	27.3	25.8
total	3738/3405	4375.9	4336.1	3741.5	3723.7

Taken from DIS'17

Jet production

• At the LHC, jet production is dominated by the gluon-initiated parton-level $\mu_R = \mu_F = \{p_{T_1}, p_T\}$ processes:

$$gg \to gg, \, gg \to q\bar{q}, \, gq \to gq, \, q\bar{q} \to gg$$
,

• Kinematics: $x_1 = \frac{p_T}{\sqrt{s}}(e^{y_1} + e^{y_2}), \quad x_2 = \frac{p_T}{\sqrt{s}}(e^{-y_1} + e^{-y_2}),$

 \longrightarrow Data on jets at high transverse momenta, p_{\perp} , sensitive to gluon PDF at high x.

• Gluon at high x is both important for **BSM searches** and quite **poorly constrained** from DIS \Rightarrow LHC data such as jet production plays crucial role in PDF determination.

NNLO jet calculation

- Full NNLO calculation for inclusive jet production in hadron-hadron collisions now available. Completion of large scale, long term project.
- Combined with availability of high precision jet data from ATLAS/ CMS \rightarrow can consider the impact on a NNLO fit for first time!

NNLO QCD predictions for single jet inclusive production at the LHC

J. Currie^a, E.W.N. Glover^a, J. Pires^b

^a Institute for Particle Physics Phenomenology, University of Durham, Durham DH1 3LE, England ^b Max-Planck-Institut für Physik, Föhringer Ring 6 D-80805 Munich, Germany

We report the first calculation of fully differential jet production in all partonic channels at nextto-next-to leading order (NNLO) in perturbative QCD and compare to the available ATLAS 7 TeV data. We discuss the size and shape of the perturbative corrections along with their associated scale variation across a wide range in jet transverse momentum, p_T , and rapidity, y. We find significant effects, especially at low p_T , and discuss the possible implications for Parton Distribution Function fits.

J. Currie et al., Phys.Rev.Lett. 118 (2017) no.7, 072002

NNLO jet impact

• **Recent MMHT study** - inclusion of ATLAS + CMS 7 TeV jet data in full NNLO fit.

• **Improvement** in description from **NLO** to **NNLO** - pQCD working as it should.

• Results stable with different choices of factorization/ renormalization scale and jet radius.

• Find softer gluon at high *x*, with ~20-50% lower uncertainty.

A.D. Martin et al., arXiv:171105757

		NLO theory	NNLO
0	ATLAS, R_{low}	215.3	172.3
χ^2	ATLAS, R_{high}	159.2	149.8
-	CMS, $R_{\rm low}$	194.2	177.8
	CMS, R_{high}	198.5	182.3

Differential Top

• Top quark pair production at LHC dominated by $gg \to t\bar{t}$ - by going to high $m_{t\bar{t}}, p_{\perp}^t$ probe gluon at high x.

- We have:
 - Recent NNLO calculation for differential top production
 - ATLAS/CMS data now available with sufficient providence of the providen
- \rightarrow Can now include in fits for firstorine.

116 (2010) no.8, 0829 31/o)do/

0.4

NNLO t

Where do we Stand?

- Despite varying approaches, global fits ~ consistent (not true in past).
 Uncertainties ~ 2% in some regions.
- Gluon:

• \overline{d} :

- Biggest difference at high x, with NNPDF3.1 lower includes more LHC data ($t\bar{t}$, jets...). Expect updates from other groups soon.
- More variation, in particular at high x (less constraints), more sensitive to methodological differences in this region.
- Reasonable agreement for other PDFs. Not perfect still work to do.

Looking to the Future

- Many years of **HL-LHC** running ahead:
 - How precisely can we expect future data to constrain PDFs? Studies underway.
 - New questions becoming important EW corrections, theory uncertainties, resummation (low x limit)...
 - NNLO the standard new tools needed?
- Proposal to run at ~27 TeV following upgrade- `HE-LHC'. Again new questions from larger coverage in x, Q².

Workshop on the physics of HL-LHC, and perspectives at HE-LHC 30 Oct 2017, 09:00 → 1 Nov 2017, 19:00 Europe/Zurich 9 500-1-001 - Main Auditorium (CERN)

Recent review summarising our current knowledge of the proton in the high precision LHC era. Please have a look if you would like to learn more:

The Structure of the Proton in the LHC Precision Era

Jun Gao^a, Lucian Harland-Lang^b, Juan Rojo^{c,d}

^aInstitute of Nuclear and Particle Physics, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China ^bDepartment of Physics and Astronomy, University College London, WC1E 6BT, United Kingdom ^cDepartment of Physics and Astronomy, VU University, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands ^dNikhef, Science Park 105, NL-1098 XG Amsterdam, The Netherlands

Abstract

We review recent progress in the determination of the parton distribution functions (PDFs) of the proton,

arXiv:1709.04922

(To appear in Physics Reports).

- Drell-Yan has played key role in our understanding of proton structure, from early parton model to the high precision LHC era.
- Still a great deal more to learn from the LHC (and Drell-Yan) stay tuned.

Thank you for listening!

