

### Discussion on Hosing Instability In the Blow-Out PWFA

Weiming An

**University of California Los Angeles** 

anweiming@ucla.edu

With help from Xinlu Xu, Lance Hildebrand and Warren Mori









### Nonlinear Plasma Wake Field









Superposition is Not Satsified for Strong Beam Load.

Zeroth order problem: Beam Loading

\* M.Tzoufras et. al., PRL 101, 145002 (2008)

First order problem: Beam Hosing

2\* C. Huang et. al., PRL 99, 255001 (2007)

## UCLA Hosing Instability in the Bubble



\* C. Huang et. al., PRL 99, 255001 (2007)

$$\begin{aligned} \partial_s^2 x_b + k_\beta^2 x_b &= k_\beta^2 x_c \\ x_c'' + c_r c_\psi \omega_0^2 x_c &= c_r c_\psi \omega_0^2 x_b \\ & \text{Nonlinear Equation!} \\ k_\beta &= k_p / \sqrt{2\gamma}, \ \omega_0 &= k_p / \sqrt{2} \\ c_r &\equiv n_b R_b^2 / r_0^2 \\ c_\psi &\equiv 1 / (1 + \psi_0) \\ \end{aligned}$$
E-folding for the Growth Rate
$$1.3 [c_r c_\psi (k_\beta s) (\omega_0 \xi)^2]^{1/3} \end{aligned}$$

### Mitigating Hosing Instability

#### BNS Damping Longitudinally correlated energy spread



### Mitigating Hosing Instability

#### What about the trailing beam?



Trailing Beam: E = 10 GeV, I<sub>peak</sub>=9 kA  $\sigma_r$  = 3.65 μm,  $\sigma_z$  = 6.38 μm , N =4.33 x 10<sup>9</sup> (0.69 nC), ε<sub>N</sub> = 50 μm (transversely offset by 1 μm)







1 clor

50 52 54 56 5.8 6.0 6.2 × [c/w]

-0,4

### Mitigating Hosing Instability

#### What about the trailing beam?

Drive Beam: E = 10 GeV, I<sub>peak</sub>=15 kA  $\sigma_r = 3.65 \ \mu m, \ \sigma_z = 12.77 \ \mu m,$ N =1.0 x 10<sup>10</sup> (1.6 nC),  $\varepsilon_N$  = 50 µm

Trailing Beam: E = 10 GeV, Ipeak=9 kA  $\sigma_r = 3.65 \ \mu m, \ \sigma_z = 6.38 \ \mu m, \ \sigma_z = 6.38 \ \mu m$ N =4.33 x 10<sup>9</sup> (0.69 nC), ε<sub>N</sub> = 50 μm (transversely offset by 1 µm)





Plasma and Beam Densities

### Mitigating Hosing Instability

Tai

Head



ξ[μm]

Center

### Killing the Hosing Instability

Drive Beam: E = 10 GeV,  $I_{peak}$ =15 kA σ<sub>r</sub> = 0.516 μm, σ<sub>z</sub> = 12.77 μm , N =1.0 x 10<sup>10</sup> (1.6 nC), ε<sub>N</sub> = 1 μmrad

UCLA

Trailing Beam: E = 10 GeV,  $I_{peak}$ =9 kA  $\sigma_r = 0.516 \ \mu m$ ,  $\sigma_z = 6.38 \ \mu m$ , N =4.33 x 10<sup>9</sup> (0.69 nC),  $\epsilon_N = 1 \ \mu mrad$ (transversely offset by 1  $\mu m$ )

Distance between two bunches: 150 μm Plasma Density: 4.0 x 10<sup>16</sup> cm<sup>-3</sup> (Hydrogen)

Plasma and Beam Densities



### Killing the Hosing Instability



UCLA

### Killing the Hosing Instability

Head

UCLA





With Ion Motion

10

Trailing Beam Centroid (µm)

-2

0

Without Ion Motion





 $\xi = -\sigma_z$ 

ξ = 0

20

Propagation Distance (cm)

30

40

 $\xi = \sigma_z$ 

Drive Beam: E = 10 GeV,  $I_{peak}$ =15 kA  $\sigma_r$  = 0.516 μm,  $\sigma_z$  = 12.77 μm , N =1.0 x 10<sup>10</sup> (1.6 nC),  $ε_N$  = 1 μmrad Trailing Beam: E = 10 GeV, I<sub>peak</sub>=9 kA  $\sigma_r$  = 0.516 μm,  $\sigma_z$  = 6.38 μm , N =4.33 x 10<sup>9</sup> (0.69 nC), ε<sub>N</sub> = 1 μmrad (transversely offset by 1 μm)