

Discussion on Hosing Instability In the Blow-Out PWFA

Weiming An

University of California Los Angeles
anweiming@ucla.edu
With help from Xinlu Xu, Lance Hildebrand and Warren Mori

ittp://picksc.idre.ucla.edu

π

UCLA

Nonlinear Plasma Wake Field

Focusing Field $\left(E_{r}-B_{\theta}\right)$

Superposition is Not Satsified for Strong Beam Load.

Zeroth order problem: Beam Loading

* M.Tzoufras et. al., PRL IOI, I45002 (2008)

First order problem: Beam Hosing
2* C. Huang et. al., PRL 99, 25500I (2007)

UCLA
 Hosing Instability in the Bubble

$$
\mathrm{S}=0.52 \mathrm{~m}
$$

Region I Region II Region III

(a)
*. Huang et. al., PRL 99, 25500I (2007)
$\partial_{s}^{2} x_{b}+k_{\beta}^{2} x_{b}=k_{\beta}^{2} x_{c}$
$x_{c}^{\prime \prime}+c_{r} c_{\psi} \omega_{0}^{2} x_{c}=c_{r} c_{\psi} \omega_{0}^{2} x_{b}$
Nonlinear Equation!
$k_{\beta}=k_{p} / \sqrt{2 \gamma}, \omega_{0}=k_{p} / \sqrt{2}$
$c_{r} \equiv n_{b} R_{b}^{2} / r_{0}^{2}$
$c_{\psi} \equiv 1 /\left(1+\psi_{0}\right)$

E-folding for the Growth Rate

$$
1.3\left[c_{r} c_{\psi}\left(k_{\beta} s\right)\left(\omega_{0} \xi\right)^{2}\right]^{1 / 3}
$$

UCLA
 Mitigating Hosing Instability

BNS Damping Longitudinally correlated energy spread

UCLA

Mitigating Hosing Instability

What about the trailing beam?

$$
\begin{aligned}
& \text { Drive Beam: } E=10 \mathrm{GeV}, I_{\text {peak }}=15 \mathrm{kA} \\
& \sigma_{\mathrm{r}}=3.65 \mu \mathrm{~m}, \sigma_{\mathrm{z}}=12.77 \mu \mathrm{~m}, \\
& \mathrm{~N}=1.0 \times 10^{10}(1.6 \mathrm{nC}), \varepsilon_{\mathrm{N}}=50 \mu \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Trailing Beam: } E=10 \mathrm{GeV}, I_{\text {peak }}=9 \mathrm{kA} \\
& \sigma_{\mathrm{r}}=3.65 \mu \mathrm{~m}, \sigma_{\mathrm{z}}=6.38 \mu \mathrm{~m}, \\
& \mathrm{~N}=4.33 \times 10^{9}(0.69 \mathrm{nC}), \varepsilon_{\mathrm{N}}=50 \mu \mathrm{~m} \\
& \text { (transversely offset by } 1 \mu \mathrm{~m})
\end{aligned}
$$

Distance between two bunches: $150 \mu \mathrm{~m}$ Plasma Density: $4.0 \times 10^{16} \mathrm{~cm}^{-3}$

QEP1
Time $=200.00\left[1 / \omega_{\mathrm{p}}\right.$]

UCLA

Mitigating Hosing Instability

What about the trailing beam?

$$
\begin{aligned}
& \text { Drive Beam: } E=10 \mathrm{GeV}, I_{\text {peak }}=15 \mathrm{kA} \\
& \sigma_{\mathrm{r}}=3.65 \mu \mathrm{~m}, \sigma_{\mathrm{z}}=12.77 \mu \mathrm{~m}, \\
& \mathrm{~N}=1.0 \times 10^{10}(1.6 \mathrm{nC}), \varepsilon_{\mathrm{N}}=50 \mu \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Trailing Beam: } E=10 \mathrm{GeV}, I_{\text {peak }}=9 \mathrm{kA} \\
& \sigma_{\mathrm{r}}=3.65 \mu \mathrm{~m}, \sigma_{\mathrm{z}}=6.38 \mu \mathrm{~m}, \\
& \mathrm{~N}=4.33 \times 10^{9}(0.69 \mathrm{nC}), \varepsilon_{\mathrm{N}}=50 \mu \mathrm{~m} \\
& \text { (transversely offset by } 1 \mu \mathrm{~m})
\end{aligned}
$$

Distance between two bunches: $150 \mu \mathrm{~m}$
Plasma Density: $4.0 \times 10^{16} \mathrm{~cm}^{-3}$

Trailing Beam Energy Chirp

Plasma and Beam Densities
Time $=200.00\left[1 / \omega_{p}\right]$

10\% Energy Chirp

UCLA
 Mitigating Hosing Instability

Head

$$
\underline{x}=-\frac{0}{2}
$$

Center

Tail

$$
\xi=\sigma_{z}
$$

Propagation Distance $\longrightarrow S=25.66[\mathrm{~cm}]$
Sample Frame

Overloading the Wake can compensate the chirp.

UCLA

Killing the Hosing Instability

Drive Beam: $\mathrm{E}=10 \mathrm{GeV}, \mathrm{I}_{\text {peak }}=15 \mathrm{kA}$ $\sigma_{r}=0.516 \mu \mathrm{~m}, \sigma_{z}=12.77 \mu \mathrm{~m}$, $\mathrm{N}=1.0 \times 10^{10}(1.6 \mathrm{nC}), \varepsilon_{\mathrm{N}}=1 \mu \mathrm{mrad}$

Trailing Beam: $\mathrm{E}=10 \mathrm{GeV}, \mathrm{I}_{\text {peak }}=9 \mathrm{kA}$ $\sigma_{\mathrm{r}}=0.516 \mu \mathrm{~m}, \sigma_{\mathrm{z}}=6.38 \mu \mathrm{~m}$,
$\mathrm{N}=4.33 \times 10^{9}(0.69 \mathrm{nC}), \varepsilon_{\mathrm{N}}=1 \mu \mathrm{mrad}$ (transversely offset by $1 \mu \mathrm{~m}$)

Distance between two bunches: $150 \mu \mathrm{~m}$
Plasma Density:
$4.0 \times 10^{16} \mathrm{~cm}^{-3}$ (Hydrogen)

Plasma and Beam Densities

UCLA

Killing the Hosing Instability

Blowout PWFA
QEP

Focusing Field $\left(E_{r}-B_{\theta}\right)$

UCLA

Killing the Hosing Instability

Head

$$
\xi=-\sigma_{2}
$$

Center

$\xi=0$

Tail

$$
\xi=\sigma_{z}
$$

Drive Beam: $\mathrm{E}=10 \mathrm{GeV}, \mathrm{I}_{\text {peak }}=15 \mathrm{kA}$ $\sigma_{r}=0.516 \mu \mathrm{~m}, \sigma_{z}=12.77 \mu \mathrm{~m}$, $\mathrm{N}=1.0 \times 10^{10}(1.6 \mathrm{nC}), \varepsilon_{\mathrm{N}}=1 \mu \mathrm{mrad}$

Trailing Beam: $\mathrm{E}=10 \mathrm{GeV}, I_{\text {peak }}=9 \mathrm{kA}$ $\sigma_{\mathrm{r}}=0.516 \mu \mathrm{~m}, \sigma_{\mathrm{z}}=6.38 \mu \mathrm{~m}$,
$\mathrm{N}=4.33 \times 10^{9}(0.69 \mathrm{nC}), \varepsilon_{\mathrm{N}}=1 \mu \mathrm{mrad}$ (transversely offset by $1 \mu \mathrm{~m}$)

