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Introduction to PWFA
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e Plasma wake excited by relativistic
particle bunch

e "Blow-out” regime when np/n. > 1
e Acceleration and focusing by plasma
o Accelerating field scales as nl/?

e Typical: n. ~10*" cm™3,

ky' =17 um, E 210 GV/m, G >
MT /m
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Hosing instability in PWFA
Courtesy of Weiming An from UCLA.




Plasma wakefields

The terminology of wakefields in plasma can be confusing. The original
meaning of the wake in plasma is the field generated by the driver that

accelerates the witness beam. The driver is a beam of charged particles
(PWFA) or a laser beam (LWFA).

In this presentation, by wakefields | mean the fields (longitudinal and
transverse) with which the witness bunch acts on itself. They are
generated by the leading charges and act on the trailing charges of the
witness bunch.

n linear approximation, valid for n, < np, one can assume that the
perturbation of the plasma density is small, dn. < n.. The wakefield
oroblem can be solved analytically for arbitrary charge distribution of the
driver and witness bunches®. This approach, unfortunately, does not
work Iin the blowout regime.

1
T. Katsouleas et al., Particle Accelerators, 22, 81 (1987).



Waketields in the blowout regime

In the absence of theory some
researchers® use for the short-range
k for a

wakefields formulas that wor
round pipe with resistive wal
corrugated pipe, dielectric pipe, etc
They replace the pipe radius a iIn

these formulas by the bubble radius

rp at the location of the source
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charge,
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we(z) = —2/7(2) w(z) = —4h(2)
'y 'y

h(z) is the step function (in SI system of units multiply by Zyc/4m).

Our goal is to calculate the wakes by solving Maxwell equations with

correct plasma responce.

2v. Lebedev, A. Burov, S. Nagaitsev, arXiv:1701.01498 (2017).



Relativistic point charge moving in free space

vacuum
. In wakefield theory for relativistic beams we
assume v = c. When a point charge g is
< q moving in vacuum, its field is
V=C
2
r

What happens if the point charge is moving in uniform, cold plasma of
density ng?



Point charge moving through plasma

plasma - B - The remarkable result of Ref.” is the existence

& = of the electromagnetic shock wave (EMSW)
— = E, = Bo = 2qk,Ki(kpr)d(z — ct)
T N

f g where k, = w,/c = V/4mtnge2/mc? and Kj is

. .:‘{‘?CL :; the modified Bessel function. For r < kp_l we
i / 7 recover E,, Bg =~ 2qd(z — ct)/r; for r > kp_l

°‘ i B— the field decays exponentially,

shock wave & — E,, Bg oc e **"/\/k,r. Remarkably, the fields in

' | EMSW are linear functions of charge.

v

The only external dimensionless parameter in the problem is

q
vV = grekp = Ngrekp, ~ q+/no

For ng = 10®* cm™>, g = 1 nC we have kp_1 =53 um, v =0.3.

5 N. Barov et al., PRAB 7, 061301 (2004).



Plasma equations

"his is the system of equations (in dimensionless units) that governs the plasma
dynamics in axisymmetric geometry. We assume a steady state with everything

depending on & =t — z and r = \/x2 + y2. Introduce Y = ¢ — A,,

E, = agll), E, = _arll) & — ((_,kp_l
Eq. for Y E — Emcw,/e

10 0
r arrarll) = ne(l—v) =1
Eq. for Bg
10 B 0 - 0 - ongy Ony,
N — — K7 NeVr — T NeV;
ror O 0& or or or
Eqgs. of motion for plasma electrons
dpr Y dl’ Pr 1
— —ar — b . — 1 — > = — 1

The continuity equation

0
Oz [ne(1 — vy)] + Ernevr =0

Remarkably, for a given plasma flow, n., v, and v,, the fields are found through
an integration over r in each slice &.



Numerical solution of PWFA equations

We® developed a matlab code that solves an axisymmetric plasma bubble
generated by a Gaussian driver and witness bunches. lllustrations: the
driver with 0, = 13 um, o, = 5 um, plasma density 4 x 10'® cm™3

(ky* =26 pm).

Plots of the longitudinal electric field. One unit of electric field is 19.2
GV/m.

6
G. Stupakov, P. Baxevanis, V. Khudik, to be published.



Longitudinal wake in the bubble
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| developed theory that calculates a jump Iin E, immediately behind the
witness charge, AE,(r,&). Remarkably, the theory predicts that this
jump is proportional to the (dimensionless) witness charge v,, (the
charge has not to be small). So we can introduce the longitudinal wake

IS wy = AEZ(O) Ev)/VW'



Calculation of the longitudinal wake

First, one needs to calculate the strength of the EMSW, D(r, &), at the
location of the witness charge:

E (r,&) = D(r,&0)d(& — &o)

(here &g is the position of the source charge in the bubble). It satisfies
the following equations

010 D — neO(r>£)

— D
arrarr Yolr, &)

Here neg and yg are the quantities in the bubble without the witness

charge. Then
10

ror

This result can be benchmarked against the wakefields in a hollow
plasma channel.

AE, = rD



Wakeftields in a hollow plasma channel

Wakefields for a hollow plasma channel were calculated in” in linear
approximation (small charge limit).

Longitudinal wake

plasma
PSS SIS S S S Q
A wy(z) = 2K cos <?Z>
A
. 2 Ko(akp)
"""""""""""" - ->( " T2 K (akp)

In my analysis | use neg(r) = ngh(r — a) and yg(r) = 1 and obtain

B 4 K()(akp)

wi(0) = a’ Ko (akp)

The wake wy(0) is valid not only in the linear, but in nonlinear regime as

well.

7
C. Schroeder, D. Whittum, J. Wurtele. PRL, 82, 1177 (1999).




Longitudinal wake as a function of &
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This wake is in good agreement with the simulated jump in AE, of a
witness charge on the axis of the bubble.



Transverse wake in the bubble

The source charge is now off axis, the
offset is assumed small. The shock wave
is not axisymmetric, E, oc D(r, &) cos 6,
Eo o< D(r,&)sin@. Behind the wave
AE,(r, &,0) = AE,(r, &) cosB. The

----------------------------------------- fields satisfy the following equations
Flow and fields

change behind
1 4D n,
arrﬁ—|——6r __2:n0(r>£)ﬁ
r r VO(“ Ev)
2D
AE, =—03,D— ==
y r

The transverse wake is w; is found from the Panofsky-Wenzel relation and it is a
linear function of the distance between the source and the witness,

wy = w/ (& — &). Our result agrees with the linear approximation of the
transverse wake in a plasma channel calculated by Schroeder et al.

W/ _ 8 Kl(akp)
g 2 K3(akp)




Transverse wake as a function of &
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FIG. 4. Longitudinal wake (left panel) and the slope of the transverse wake (right panel) in the plasma bubble
shown in Fig. 2. The dashed lines show the wakes calculated using simple formulas for the short-range wakes
in a cylindrical pipe. The red dot-dashed lines are plotted using Egs. (43).
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FIG. 5. Longitudinal wake (left panel) and the slope of the transverse wake (right panel) for 2 nC (label 1) and
4 nC (label 2) driver bunches. The red dot-dashed lines are plotted using Eqgs. (43).



BBU instability of the witness bunch

With the model for the wakefields in the plasma bubble, we apply them to the
beam-breakup instability of the witness bunch.

—

e X(s, z) is the transverse offset of the
//,,/”/ TX(S,Z) §Iice, z.is the coordinate in the bunch, s
Is the distance along the accelerator:

a%v(s)a% +Y(s)k(25(5)} X(s,z) = Npre Jc fu (2" )we (2" — 2)X(s,2")dz’

Here y(s) is the energy increase with distance due to acceleration, kg (s) is the
focusing, f,, is the longitudinal distribution in the bunch.

Assume y(s) = vo + gs, kg(s) = ko\/Yo/Y(s). If the focusing is due to plasma
ions, then ko = k,/+/2Y0.

We can solve the BBU equation numerically for an arbitrary distribution
function.




Numerical solution for a Gaussian bunch

Parameters of Weiming An simulations: the driver has o, = 12.77 um,
or =3.65 um, Q = 1.6 nC, (/peax = 15 kA); the witness has

0, =6.38 um, 0, = 3.65 um, Q = 0.69 nC, (/reax = 13 kA). Plasma
density 4 x 10'® ¢cm 3. The distance between the bunches is a) 108 pum
and b) 150 um.
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One way to characterize BBU is to calculate the projected emittance:
/

Numerical solution for a Gaussian witness bunch
S
where the averaging means

18



BBU instability—projected emittance
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For a particular application this result can be translated into the jitter
tolerance for the witness bunch.
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Summary

@ A method is developed to calculate longitudinal and transverse
short-range wakes in the PWFA blowout regime. The calculation
requires the knowledge of the energy-density radial distribution in
the bubble, which can be taken from 2D simulations of PWFA. We
developed a matlab code that solves axisymmetric plasma bubble
excited by a driver with arbitrary longitudinal current distribution
(run a few minutes on a desktop computer).

@ The calculated transverse wakefield is then used for the study of
BBU instability. The strength of the instability critically depends on
the position of the witness bunch in the bubble.
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