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Motivations for the
hollow plasma channel
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An intrinsic charge asymmetry

• Plasmas have a problem that conventional accelerating structures do not: 
an intrinsic charge asymmetry. 

• Even if we have a mechanism for accelerating electrons, this does not extend to 
positrons.

5

e- e+

mi>>	me



Measurement of wakefields in hollow plasma channels – Carl A. Lindstrøm – Oct 18, 2017

Hollow plasma channels
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• A hollow plasma channel is a proposed method to symmetrize the charge response and 
allow high gradient positron acceleration. 

• Principle:  
–  A positron bunch propagates in the centre of the hollow plasma channel 
–  The channel wall is perturbed, driving an oscillating longitudinal wakefield  
–  A trailing positron bunch is placed in the accelerating phase of the wakefield 

• Benefit of hollow plasma channels: In principle, no focusing forces inside

Longitudinal wakefield

-200 0 200 400 600 800
z ( m)

-300

-200

-100

0

100

200

300

x 
(

m
)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

W
z (V

 m
-1

 p
ar

tic
le

-1
)

-10

-5

0

5

10

E z (M
V 

m
-1

)

On-axis wakefield
Theoretical model
Hollow plasma channel
Positron bunches

Transverse wakefield

-200 0 200 400 600 800
z ( m)

-300

-200

-100

0

100

200

300

x 
(

m
)

-300

-200

-100

0

100

200

300

W
x (V

 m
-2

 p
ar

tic
le

-1
)

-1.5

-1

-0.5

0

0.5

1

1.5

F x (M
eV

 m
-1

)

Drive bunch Probe

(a)

(b)
(QuickPIC simulation)



m=0,	longitudinal	mode	

m=1,	transverse	dipole	mode	

S.	Gessner,	PhD	thesis,	SLAC-R-1073	(2016)	,	
earlier	work	by	C.	Schroeder	(1999)		
	

Analy&cal	expressions	for	hollow	channel	modes	exist	
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Misalignment leads to transverse wakefields

• Drive bunches perfectly aligned to the channel axis will 
give zero transverse force everywhere. 

• However, misaligned drive bunches will drive strong 
dipole-like (transversely uniform) oscillating 
transverse wakefields. 

• First discussed by C. Schroeder in 1999 (“Multimode 
Analysis of the Hollow Plasma Channel Accelerator”). 

• This leads to beam deflection and beam loss. 

• This problem gets rapidly worse with stronger 
accelerating fields (transverse force scales faster with 
smaller channel radius):

Longitudinal wakefield
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W∥ ∝ 1

a2

• Many orders of magnitude stronger wakefields compared to CLIC  
–  Hollow channel (500 µm diameter, 3x1015 cm-3): ~1 000 000 V/pC/m/mm 
–  CLIC (8 mm diameter, copper): ~10-100 V/pC/m/mm

W⊥ ∝ 1

a3−4



Measurement of wakefields in hollow plasma channels – Carl A. Lindstrøm – Oct 18, 2017 9

Experiments at FACET
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The E225 experiment

Spencer Gessner (left) and Sebastien Corde (right) at FACET.
Image source: SLAC National Accelerator Laboratory

FACET experimental area, showing positron beam (blue), 
ionising laser (red) and lithium vapor oven (orange).

Image source: Spencer Gessner

• FACET hosted the dedicated hollow plasma channel E225 experiment, lead by Spencer Gessner 

• The main aim was to demonstrate positron acceleration in a hollow channel, but also to 
investigate transverse wakefields
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E225 – Experimental setup

• The SLAC linac provided two 20 GeV bunches, made from one bunch using a beam notching device. 

• The FACET laser (up to 10 TW, 60 fs pulses) was adjusted down to ensure no ionisation in the channel. 

• A lithium oven was set to give a neutral gas density of 3x1016 cm-3 (but was necessarily fully ionized).
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Positrons successfully accelerated in a hollow channel

• A scan of bunch separations shows the energy gain (or loss) depends on the phase.
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Transverse wakefield
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Reconstruction of the plasma channel  
based on kick measurements

• Clear evidence of energy gain for the positron witness bunch, while there is energy 
loss for the positron drive bunch.
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The transverse wakefield experiment

• Our goal was to measure the how the 
transverse wakefield varied longitudinally. 

• The probe bunch observing the wakefield is 
deflected angularly (kicked) when the channel and 
the drive bunch are relatively offset. 

• The experiment performed was:  
Transverse channel offsets  
for various bunch separations 
–  The channel (250 µm radius) was offset by 
transverse laser jitter (20-40 µm rms)  
–  The bunch separation was varied by stretching 
the bunch and adjusting the notching device. 

• Diagnostics:  
– Laser offset imaged downstream (laser 
cameras). 
– Probe kick measured on a spectrometer  
    (in the non-dispersed plane).  
– Bunch separation measured using an  
    electro-optical sampler.
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Prediction:
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Observed data (deflection vs. channel offset)

• For each bunch separation, a correlation between channel offset and probe bunch angular deflection was observed. 

• The slope of this correlation is proportional to the transverse wakefield per offset at the z-location of the 
probe bunch.
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Another independent measurement

• An independent measurement is beneficial (due to high complexity). 

• It is possible to estimate the transverse wakefield per offset from the measured longitudinal 
wakefield, via the Panofsky-Wenzel theorem and the linear model.

∂Wx

∂z
=

∂Wz

∂x

Wx(z)

∆x
≈ −κ(a, b)

a2

∫ z

0
Wz(z

′)dz′ κ(a, b) =
4χ2

⊥ − 2

χ2
∥ − 1

where

Panofsky-Wenzel theorem: Estimate of transverse from longitudinal wakefield:

Integrate (++)

• Not perfect: Assumes linear model, breaks down far behind the drive bunch. 

• Provides verification of numerical calibrations, etc. 

• The longitudinal wakefield was measured by the energy change of the probe bunch (on a spectrometer).
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Final experimental results

Transverse wakefield
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• Plasma density determined by a wavelength fit (10% ionization = 3x1015 cm-3) 

• Good fit, largely consistent with theory. Some discrepancy at larger separations.
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Implications

• Overall, the measurement agrees with the 
theoretical models. 

• Simulation-based parameter scans indicate that the 
discrepancy at large separations can possibly be 
explained by using a more complex radial plasma 
shape (not possible to exclude with our diagnostics). 

• Implication:  
–  There is indeed a strong transverse wakefield, as 
expected.  
–  This needs to be mitigated for the hollow channel 
to be useful. 

• Submitting these results to Physical Review Letter.
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Future directions
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Positron acceleration should be electron driven

• Wall plug-to-beam efficiency is key to high energy colliders 

• Therefore, ideally a plasma-based linear collider is electron driven (or proton driven) 
because positrons are energy intensive to produce.
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Electron driven positron acceleration in a hollow plasma channel. 
Image source: S. Gessner thesis, SLAC-R-1073
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Two big challenges for hollow plasma channels

20

Problem #1 (fundamental) 
Suppressing the transverse wakefield 

Problem #2 (technical) 
Creating an on-axis vacuum
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Suppressing the transverse wakefield (one interesting pathway)

• The wakefields are determined in part by the radial plasma profile n(r). 

• Speculation: A suitably tailored radial profile may damp (locally or globally) the transverse 
wakefield, while sustaining a non-zero accelerating field  
 
(ref. G. Shvets “Excitation of Accelerating Wakefields in Inhomogeneous Plasmas”, 1996)
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Creating a vacuum on axis

• Eventually, we need to have a vacuum 
on axis, to avoid beam ionisation. 

• Centrifuge technique, where the gas 
density is approximately exponentially 
decaying towards the axis. 

• Cryo-cooled gas cluster technique 
(used for corrugated plasma channels 
by H. Milchberg) 

• These ideas can potentially be tested in 
the laser labs at UCLA or UC Boulder.
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Conclusion

• Hollow channels are promising, supporting very strong longitudinal wakefields. 

• However, they also support very strong well as transverse wakefields (leading to beam loss) 

• Positrons were accelerated in a hollow plasma channel! 

• The transverse wakefield was measured experimentally, and found largely consistent with theory. 

• Suppression mechanisms for the transverse wakefield is key to the survival of the hollow channel.

23

Ideas for FACET-II hollow channel experiments

• Radial tailoring of the hollow channel profile (laser shapes, time delays, etc.) 

• On-axis vacuum (centrifuges, cryo-cluster flow, etc.)  

• Electron-driven hollow channel positron acceleration.
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Thank you for your attention!
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Dependence on channel radius
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by Spencer Gessner

Longitudinal wakefield Transverse wakefield


