High fields computational challenges

T. Grismayer¹

M.Vranic¹, F. Del Gaudio¹, P. Carneiro¹, J. Martins¹, R. Fonseca^{1,2} L. O. Silva¹ 1 GoLP

Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal

- http://epp.ist.utl.pt
- 2 DCTI, ISCTE

Lisbon University Institute Lisbon, Portugal

LP

0

5

Implementation of QED effect

PIC loop + QED + Merging algorithm

Strong field QED with lasers

Laser-beam + cascades + vacuum birefringence

Beam-beam physics

Disruption + strong field QED with LWFA and SLAC

OSIRIS 3.0

osiris framework

Massivelly Parallel, Fully Relativistic
 Particle-in-Cell (PIC) Code
 Visualization and Data Analysis
 Infrastructure
 Developed by the osiris.consortium
 ⇒ UCLA + IST

code features

- Scalability to ~ 1.6 M cores
- Dynamic Load Balancing
- GPGPU and Xeon Phi support
- Particle merging
 - QED module
- Quasi-3D
- Current deposit for NCI
- Collisions
- Radiation reaction
- Ponderomotive guiding center

Thomas Grismayer | FACET Workshop 2017 | SLAC

http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

OSIRIS-QED PIC LOOP

The fundamental χ parameter

Other configuration with lower E should allow pair creation !

$$\chi = \frac{1}{E_s} \sqrt{(\gamma \mathbf{E} + \frac{\mathbf{p}}{mc} \times \mathbf{B})^2 - (\frac{\mathbf{p}}{mc} \cdot \mathbf{E})^2}$$
$$\chi \simeq \frac{\gamma E_{\perp}}{E_s}$$

Implementation of QED effects

Radiation Reaction

Different types of Radiation reaction models

Implementation in PIC codes

• Continuous damping rate: particle pusher with \mathbf{F}_{rad} $\gamma < 10$

• QED probabilistic approach: particle pusher + Monte Carlo module

- every Δt : probability of photon emission
- Select a photon in QED synchrotron spectrum
- Update particle momentum due to quantum recoil

• The QED approach can be generalized to any external EM fields under the conditions: $t_{carac}(\vec{E}, \vec{B}) \gg t_{coh} \implies a_0 \gg 1$ - quasi-static fields - weak fields $\chi_e^2 \gg \operatorname{Max}(f,g) \quad (f,g) \ll 1$

$$f = F_{\mu\nu}^2 / E_{crit}^2 \qquad g = F_{\mu\nu}^* F_{\mu\nu} / E_{crit}^2 \qquad E_{crit} = m^2 c^3 / e\hbar \qquad \chi_{e,\gamma} = \frac{|F_{\mu\nu} p_{e,\gamma}^{\nu}|}{E_{crit} m c}$$

* Landau & Lifshitz (Theory of Fields)

** A.I. Nikishov & V.I. Ritus (1967), N.P. Kelpikov (1954), V.N. Baier & V.M. Katkov (1967)

Emission rate 10^{4} $\frac{dP}{dt} = \int_0^{\chi_e} d\chi_\gamma \frac{d^2 P}{dt d\chi_\gamma}$ 10² $\tau_c = \frac{\hbar}{mc^2}$ d(P/_Y)/d(t/_c) 0 0 10^{-2} 10 -3 2 -2 -1 0 log10(χ_) 1 3

Synchrotron Spectrum

All-optical radiation reaction

~ 40% energy loss for a I GeV beam at 10^{21} W/cm²

M.Vranic et al., Phys. Rev. Lett. 113, 134801 (2014)

All-optical radiation reaction

~ 40% energy loss for a I GeV beam at 10^{21} W/cm²

Pairs can be produced already at $\chi \simeq 1$

 \sim 200 pairs obtained per 1 000 000 interacting electrons

Thomas Grismayer | FACET Workshop 2017 | SLAC

Pairs can be produced already at $\chi \simeq 1$

 \sim 200 pairs obtained per 1 000 000 interacting electrons

Thomas Grismayer | FACET Workshop 2017 | SLAC

Standing waves configurations

A.R Bell and J. G Kirk PRL, 101, 200403 (2008) T.Grismayer et al., PRE 95, 023210 (2017) Thomas Grismayer | FACET Workshop 2017 | SLAC

Standing waves configurations

A.R Bell and J. G Kirk PRL, 101, 200403 (2008) T.Grismayer et al., PRE 95, 023210 (2017) Thomas Grismayer | FACET Workshop 2017 | SLAC

Interaction between self-consistent created pair plasma and the lasers

T. Grismayer et al., PoP 23, 056706 (2016)

Heisenberg-Euler QED corrections

Heisenberg-Euler corrections to Maxwell's Equations

• Electron-positron fluctuations give rise to an effective polarization and magnetization of the vacuum which can be treated in an effective form as corrections to Maxwell's equations*.

$$\begin{aligned} \frac{\partial \vec{B}}{\partial t} + \vec{\nabla} \times \vec{E} &= 0 \qquad \vec{\nabla} \cdot B = 0 \\ \vec{\nabla} \times \vec{H} - \frac{\partial \vec{D}}{\partial t} &= 0 \qquad \vec{\nabla} \cdot D = 0 \\ \vec{D} &= \epsilon_0 \vec{E} + \vec{P} \\ \vec{B} &= \mu_0 \vec{H} + \vec{M} \end{aligned}$$

• With the effective vacuum polarization and magnetization

$$\vec{P} = 2\xi \left[2(E^2 - c^2 B^2)\vec{E} + 7(\vec{E} \cdot \vec{B})\vec{B} \right]$$

$$\vec{M} = -2\xi \left[(2(E^2 - c^2 B^2)\vec{B} - 7(\vec{E} \cdot \vec{B})\vec{E} \right]$$

Relevance for extreme astrophysical scenarios?

J.Pétri, Mon. Not. Roy. Astron. Soc (2015)

• Unprecedented intensities will allow to probe the quantum vacuum! What laser properties will be affected?

🖲 इत्तम्द Central Laser Facility

A. Di Piazza et.al, Rev. Mod. Phys. 84, 1177–1228 (2012).

• Extract observable consequences of fundamental QED predictions.

P. Carneiro et al., arxiv: 1607.04224 (2016) A.P. Domenech and H. Ruhl arxiv: 1607.00253 (2016) homas Grismayer | FACET Workshop 2017 | SLAC

Plane Wave transverse pump profile vs Gaussian pump beam profile

S. Bragin et al., arxiv: 1704.05234 (2017) F. Karbstein et al., PRD 92, 071301 (2015)

Vacuum Birefringence

Plane Wave transverse pump profile vs Gaussian pump beam profile

* V. Dinu et al., Physical Review D 90, 045025 (2014)

OSIRIS vs CAIN*

OSIRIS

Pusher

Usual Boris-Pusher with classical and/or quantum radiation reaction with recoil

Beam field solver

Solves solves self-consistently Maxwell's equations for all particles in the box (beam + new created particles)

QED processes (first principles)

- Non-linear Compton scattering
- Breit-Wheeler pair production (spin averaged)
- Linear Compton scattering

CAIN

Pusher

Crank-Nicolson or subsampling trajectory with 4th order Runge-Kutta

Beam field solver

- Solves Poisson equation for transverse instantaneous electric field applied to each slice considering only the charges in the beam.
- The transverse magnetic field obeys

$\mathbf{E} = -\boldsymbol{\beta} \times \mathbf{B}$

QED processes with Spin effects

- Non-linear Compton scattering
- Breit-Wheeler
- Bethe-Heitler
- Landau-Lifschitz pair production with spin effects
- Linear Compton scattering

* P. Chen et al., SLAC-PUB-6583 (1994) and <u>https://ilc.kek.jp/~yokoya/CAIN/cain235</u> (2003)

Disruption parameter

The disruption parameter relates to the number of pinching points of the beams during their interaction time

$$\begin{split} E_{\perp} &\simeq B_{\perp} \sim e n_0 \sigma_0 \\ E_{\parallel} &\sim E_{\perp} / \gamma \end{split}$$

$$D = \frac{r_e N \sigma_z}{\gamma \sigma_0^2}$$

Low disruption regime D<I

Transition regime I<D<I0

 $Time = 0.00 [1/\omega_{p}]$

Confinement regime D>10

Disruption parameter

The disruption parameter relates to the number of pinching points of the beams during their interaction time

$$\begin{split} E_{\perp} &\simeq B_{\perp} \sim e n_0 \sigma_0 \\ E_{\parallel} &\sim E_{\perp} / \gamma \end{split}$$

$$D = \frac{r_e N \sigma_z}{\gamma \sigma_0^2}$$

Low disruption regime D<I

Transition regime I<D<I0

 $Time = 0.00 [1/\omega_{p}]$

Confinement regime D>10

Disruption parameter

The disruption parameter relates to the number of pinching points of the beams during their interaction time

$$\begin{split} E_{\perp} &\simeq B_{\perp} \sim e n_0 \sigma_0 \\ E_{\parallel} &\sim E_{\perp} / \gamma \end{split}$$

$$D = \frac{r_e N \sigma_z}{\gamma \sigma_0^2}$$

Low disruption regime D<I

Transition regime I<D<I0

 $Time = 0.00 [1/\omega_{p}]$

Confinement regime D>10

Disruption parameter

The disruption parameter relates to the number of pinching points of the beams during their interaction time

$$\begin{split} E_{\perp} &\simeq B_{\perp} \sim e n_0 \sigma_0 \\ E_{\parallel} &\sim E_{\perp} / \gamma \end{split}$$

$$D = \frac{r_e N \sigma_z}{\gamma \sigma_0^2}$$

Low disruption regime D<I

Transition regime I<D<I0

 $Time = 0.00 [1/\omega_{p}]$

Confinement regime D>10

Energy loss of the beam: classical vs quantum

Quantum regime

Parameter χ measures the closeness to the quantum regime, with E_s the Schwinger limit

Energy loss of the beam close to the quantum regime

Average energy loss derived from the classical Landau-Lifshitz radiation reaction force

Tabletop LWFA frontier and new objectives

Fast development of plasma wakefield acceleration technology

Single-stage up to 5 GeV Multi-stage configuration

	LWFA parameters		
N [1010]	2-6		
Energy [GeV]	5-30		
Length [µm]	3		
Spot size [µm]	I×I		
D	1 0 ⁻⁵ - 1 0 ⁻²		

New LWFA beams colliders may approach the quantum regime $\chi \sim I$

courtesy of http://www.klassikmagazine.com/seb-janiak-artist/

Beam particles can emit **y** ray interacting with the oncoming beam EM field

Hard photons can decay in pairs

courtesy of http://physics.aps.org/articles/v9/67

Beamstrahlung approaching the QED regime

Before interaction

TÉCNICO LISBOA

ſ

If the beam density profile is not disrupted, the produced photon beam shows a characteristic hole, where the B field is null

Photon and pairs QED model for D<I

Particles trajectories are close to straight lines

the transverse density profile is constant $\rho(x) = \frac{e^{-x^2/2\sigma_o^2}}{\sqrt{2\pi}\sigma_o}$

The model accounts for QED processes

The time average probability for photon emission $g(\xi, x) = \int_{-\infty}^{\infty} \frac{d^2 P}{dt d\xi} dt$

Differential probability rate for pair creation ($\chi_e \leq I$) $W_p \simeq \frac{3\pi\alpha}{50} E(x,t) e^{-8/3\xi\chi_e}$

Photon emission process

Average intensity

Energy spectrum

$$I = n_o c \epsilon_e \int_{-\infty}^{\infty} \frac{\int_0^1 \xi g d\xi}{\int_0^1 g d\xi} \rho dx \qquad S(\xi) = \int_{-\infty}^{\infty} \xi g(\xi, x) \rho(x) dx$$

Probability a photon generated at t' will decay in a pair along the remaining interaction time of the two beams

$$\mathcal{P}_{\gamma \to p}(\xi, t', x) = \int_{t'}^{\infty} W_p dt = \frac{\sqrt{\pi}}{2} \tau \left[1 - \operatorname{erf}\left(\frac{t'}{\tau}\right) \right] W_p|_{t=0}$$
Characteristic time
$$\tau = \sigma_z / \sqrt{2 + 16/3\xi \chi_e(x)}$$
Time delay
Max. probability to decay

Photon decay process generates pairs

$$N_p = N \int_x^{\infty} \rho \int_{-\infty}^{\infty} \int_0^1 \frac{d^2 P}{dt' d\xi} \mathcal{P}_{\gamma \to p} d\xi dt' dx$$

Prediction of beamstrahlung radiation

The model overestimates the radiation intensity and energy spectrum, when a relevant number of pairs is produced during the interaction

Secondary pairs from 2D-3D simulations

Our model agrees with QED-PIC simulations and predicts higher number of pairs with gaussian beams than uniform beams

* P. Chen, V Telnov at Phys. Rev. Lett 63, 1796 (1989)
F. Del Gaudio, et al., to be submitted

iji

SLAC

Comparing FACET-II Electron Beam and PW laser

	FACET-II	100GeV
Energy [GeV]	10	100
Beam peak current [kA]	200	1000
Beam size σr,σz [nm]	40, 500	10, 10
Number of electrons	1010	1010
Beam density [cm-3]	1024	7 10 ²⁵
Radial electric field [V/m]	3 1014	6 10 ¹⁵
Laser intensity equivalent to electric field [W/cm ²]	1022	5 10 ²⁴
Laser power equivalent focussed into 2 µm [PW]	1.5	600
χ = 2γ·E/Es seen by 300 MeV beam	0.3	
χ seen by beam in 100TW laser focussed to 2 μm	2.3	
χ seen by 100 GeV beam		1800
a X ^{2/3}		1
Beam power [I _{peak} E] [PW]	2	100
Beam power density [W/cm²]	4 1025	3 1028

~100Hz rep. rate / ~fs duration / 10's nm focus / radial polarization

Courtesy of V. Yakimenko

(FACET II) misaligned by σ : kink instability

Electron density (10 GeV)

Time = $0.00 [1 / \omega_p]$

<u>TÉCNICO</u>

LISBOA

ſſ

(FACET II) misaligned by σ : kink instability

Electron density (10 GeV)

Time = $0.00 [1 / \omega_p]$

<u>TÉCNICO</u>

LISBOA

ſſ

New Tools to tackle a variety of extreme plasma physics problems

- Classical Radiation Reaction higher energy particles radiate more
- QED module (Non-linear Compton scattering, Breit-Wheeler,)
- Vacuum polarization solver

These tools have used to simulate various scenarios with intense lasers

- Counter propagating electron beam laser
- Counter propagating laser laser : QED cascades
- Counter propagating optical laser X-rays laser : vacuum birefringence

QED-PIC simulations can be envisaged to simulations beam-beam physics

- High disruption regime can be simulated self-consistently
- New QED cross-sections need to be developed and added to fully study beam-beam physics for SFQED