Saturation of the beam-hosing instability in quasi-linear plasma-wakefield accelerators

> <u>Remi Lehe</u>¹, Carl B. Schroeder¹, Eric Esarey¹, Jean-Luc Vay¹, Wim P. Leemans¹

^I Lawrence Berkeley National Laboratory, USA

Office of

Science

- Context: the beam-hosing instability
- Saturation of the instability with a linear betatron chirp
- Betatron chirp in the quasi-linear regime

Office of

Science

Beam-hosing instability

For long-distance laser/plasma wakefield acceleration, the beam has unstable betatron oscillations

Potential issue for **preservation of emittance** in e.g. prospective plasma-based colliders.

Office of

Science

Equation of beam-hosing instability

Equation of the oscillations for a flat-top bunch

$$\partial_z^2 x_c(\xi, z) + k_\beta^2 x_c(\xi, z) = k_c^2 \int_{\xi}^0 \sin(\kappa_p(\xi' - \xi)) x_c(\xi', z) \kappa_p d\xi'$$

(Acceleration effects neglected)

- x_c : off-axis position of the bunch, at a given slice
- z : propagation distance
- $\boldsymbol{\xi}$: head-to-tail slice coordinate along the bunch

Equation of beam-hosing instability

Equation of the oscillations for a flat-top bunch

$$\partial_z^2 x_c(\xi, z) + k_\beta^2 x_c(\xi, z) = k_c^2 \int_{\xi}^0 \sin(\kappa_p(\xi' - \xi)) x_c(\xi', z) \kappa_p d\xi'$$

Betatron oscillations in an unperturbed bubble/wakefield

Perturbation of the bubble/wakefield by the part of the bunch that is **ahead of** ξ

If k_{β} is independent of ξ (constant along the bunch): the right-hand side (due to the bunch which is ahead) oscillates at the resonant frequency of the left-hand side

→ Growing instability

ξ 0

Equation of beam-hosing instability

Equation of the oscillations for a flat-top bunch

$$\partial_z^2 x_c(\xi, z) + k_\beta^2 x_c(\xi, z) = k_c^2 \int_{\xi}^0 \sin(\kappa_p(\xi' - \xi)) x_c(\xi', z) \kappa_p d\xi'$$

The above equation is valid for:

• LWFA and PWFA

• in the blow-out and quasi-linear regime (under certain conditions) with different expressions for k_β , κ_p , k_c

- Context: the beam-hosing instability
- Saturation of the instability with a linear betatron chirp
- Betatron chirp in the quasi-linear regime

Office of

Science

Using a betatron variation to reduce beam-hosing

$$\partial_z^2 x_c(\xi, z) + \frac{k_\beta(\xi)^2}{k_\beta(\xi)^2} x_c(\xi, z) = k_c^2 \int_{\xi}^0 \sin(\kappa_p(\xi' - \xi)) x_c(\xi', z) \kappa_p d\xi'$$

Introducing a head-to-tail variation in betatron frequency should mitigate the instability. (e.g. *Balakin et al., 1983*)

In the blow-out regime, the betatron variation can be generated with **an energy chirp**. (e.g. *Mehring et al., PRL, 2017*)

Betatron variation: auto-phasing condition

$$\partial_z^2 x_c(\xi, z) + \frac{k_\beta(\xi)^2}{\kappa_c(\xi, z)} x_c(\xi, z) = k_c^2 \int_{\xi}^0 \sin(\kappa_p(\xi' - \xi)) x_c(\xi', z) \kappa_p d\xi'$$

Auto-phasing condition

For betatron oscillations with a constant amplitude and frequency:

$$k_{\beta}(\xi)^2 - k_{\beta}(0)^2 = k_c^2 \int_{\xi}^0 \sin(\kappa_p(\xi' - \xi))\kappa_p d\xi'$$

 $k_{\beta}(\xi) \approx k_{\beta,0} + \frac{k_c^2 \kappa_p^2}{2k_{\beta,0}} \xi^2$

Requires quadratic variation ; difficult in practice

However, this condition is somewhat **restrictive** because it searches **exclusively** for conditions in which the oscillations have a **constant** amplitude.

Betatron variation: linear chirp

$$\partial_z^2 x_c(\xi, z) + \frac{k_\beta(\xi)^2}{\kappa_c(\xi, z)} x_c(\xi, z) = k_c^2 \int_{\xi}^0 \sin(\kappa_p(\xi' - \xi)) x_c(\xi', z) \kappa_p d\xi'$$

Instead: linear chirp

$$k_{\beta}(\xi) = k_{\beta,0} + (\partial_{\xi}k_{\beta})\xi$$

- Several analytical solutions in different regimes relevant for conventional accelerators show mitigation as a function of $(\partial_{\xi}k_{\beta})$
 - Whittum, J. Phys. A, 1997
 - Stupakov, SLAC report, 1997
 - Chernin & Mondeli, Particle Accelerators, 1989

Office of

Science

Recently: analytical solution in regime relevant for plasma accelerator Lehe et al., submitted for publication Valid for small chirp Interestingly: depends on the sign of the chirp

Positive chirp: saturation

$$L_{sat} = \left(\frac{k_c^2 \kappa_p^2}{k_{\beta,0} |\partial_{\xi} k_{\beta}|^3 |\xi|}\right)^{1/2}$$

Standard beam-hosing (no chirp)

$$x_{c}(\xi, z) = \delta x \, \frac{\cos\left(k_{\beta}z - \frac{3}{4}N(\xi, z) + \frac{\pi}{12}\right)}{(6\pi)^{1/2}N(\xi, z)^{1/2}} \, e^{\frac{3\sqrt{3}}{4}N(\xi, z)}$$
$$N(\xi, z) = \left(\frac{k_{c}^{2}\kappa_{p}^{2}|\xi|^{2}z}{k_{\beta,0}}\right)^{1/3}$$

Asymptotic saturated solution

U.S. DEPARTMENT

Ξ

С

ERKELEY LAB

$$\begin{aligned} x_{c}(\xi, z) &= \delta x \frac{\cos[k_{\beta}(\xi)z - \varphi(z)]}{(8\pi^{2})^{1/4}N_{sat}(\xi)^{1/2}} e^{\sqrt{2}N_{sat}(\xi)} \\ N_{sat}(\xi) &= \left(\frac{k_{c}^{2}\kappa_{p}^{2}|\xi|}{k_{\beta,0}(\partial_{\xi}k_{\beta})}\right)^{1/2} \end{aligned}$$

Office of

Science

Negative chirp: saturation and slow decay

$$L_{sat} = \left(\frac{k_c^2 \kappa_p^2}{k_{\beta,0} |\partial_{\xi} k_{\beta}|^3 |\xi|}\right)^{1/2}$$

Standard beam-hosing (no chirp)

$$x_c(\xi, z) = \delta x \, \frac{\cos\left(k_\beta z - \frac{3}{4}N(\xi, z) + \frac{\pi}{12}\right)}{(6\pi)^{1/2}N(\xi, z)^{1/2}} \, e^{\frac{3\sqrt{3}}{4}N(\xi, z)}$$

Asymptotic solution

U.S. DEPARTMENT OF

3/13/6

BERKELEY LAB

$$x_{c}(\xi, z) = -\delta x \frac{\sin(k_{\beta,0}z)}{(32\pi^{2})^{1/4}N_{sat}(\xi)^{-1/2}} \frac{e^{\sqrt{2}N_{sat}(\xi)}}{|(\partial_{\xi}k_{\beta}) z \xi|} + \delta x \frac{\cos[k_{\beta}(\xi)z - \varphi(z)]}{(\pi^{2}/2)^{1/4}N_{sat}(\xi)^{1/2}} \cos\left(\sqrt{2}N_{sat}(\xi) - \frac{\pi}{4}\right)$$

Office of

Science

R. Lehe (rlehe@lbl.gov)

FACET II workshop

- The beam-hosing instability can severely **degrade** the emittance.
- A **positive chirp** in betatron frequency causes the instability to saturate.
- A negative chirp in betatron frequency causes the instability to decay.
- In both case (positive and negative), the instability is much less severe than predicted by standard scaling, which assumes constant betatron frequency.

Office of

Science

- Context: the beam-hosing instability
- Saturation of the instability with a linear betatron chirp
- Betatron chirp in the quasi-linear regime

Office of

Science

Generating a betatron chirp in different regimes

$$k_{\beta} = K/\sqrt{\gamma} \qquad F_{foc} = -mc^2 K^2 r$$

Blow-out regime

Focusing force is independent of ξ Chirp requires a (correlated) energy spread

Quasi-linear regime

Focusing force naturally depends on ξ **No energy spread required**

Confirm saturation in PIC simulations?

The code FBPIC (Fourier-Bessel PIC)

- Spectral quasi-cylindrical Particle-In-Cell algorithm (azimuthal mode decomposition)
- Runs on GPU and (multi-core) CPU
- Open-source: <u>github.com/fbpic/fbpic</u>
 Documentation: <u>fbpic.github.io</u>

Several useful features for plasma acceleration:

- Intrinsic mitigation of Numerical Cherenkov Radiation (NCR)
- Supports the boosted-frame technique
- Calculation of initial space-charge fields
- Field ionization physics (ADK model)

Using a quasi-cylindrical code for beam-hosing

- The beam-hosing instability is **not cylindrically symmetric**.
- This asymmetry can be decomposed into azimuthal modes
 (m=0: cylindrical symmetric, m=1: dipole mode, m=2: quadrupole mode, etc.)
- If the centroid offset is small compared to the beam radius, the beam hosing instability excites predominantly the mode m=1. (i.e. modes m>1 are negligible)
- FBPIC simulates modes m=0 and m=1, and thus captures the beam-hosing instability in this case (and is much faster than a full 3D Cartesian code).

Simulation results

Simulation setup

 Witness bunch: <u>No energy spread</u> Triangular longitudinally (flattens the Ez field) matched K-V distribution

Driver: either laser or bunch, in the linear regime

Parameters

$$n_p = 2 \times 10^{17} \text{ cm}^{-3}$$
 $\gamma_{bunch} = 200$ $r_{bunch} = 3 \ \mu\text{m}$ $\ell_{bunch} =$

R. Lehe (rlehe@lbl.gov)

- Laser-driven: $a_0 = 0.4$ $w_0 = 24 \ \mu m$ $\tau = 20 \ fs$
- Beam-driven: $n_d = 0.7 n_p$ $r_d = 4 \,\mu \text{m}$ $\ell_d = 3 \,\mu \text{m}$

Office of

Science

FACET II workshop

 $15 \ \mu m$

Simulation results

Simulation setup

 Witness bunch: <u>No energy spread</u> Triangular longitudinally (flattens the Ez field) matched K-V distribution

Driver: either laser or bunch, in the linear regime

Parameters

$$n_p = 2 \times 10^{17} \text{ cm}^{-3}$$
 $\gamma_{bunch} = 200$ $r_{bunch} = 3 \ \mu\text{m}$ $\ell_{bunch} = 15 \ \mu\text{m}$

R. Lehe (rlehe@lbl.gov)

- Laser-driven: $a_0 = 0.4$ $w_0 = 24 \ \mu m$ $\tau = 20 \ fs$
- Beam-driven: $n_d = 0.7 n_p$ $r_d = 4 \,\mu \text{m}$ $\ell_d = 3 \,\mu \text{m}$

Office of

Science

FACET II workshop

Simulation results

Simulation setup

 Witness bunch: <u>No energy spread</u> Triangular longitudinally (flattens the Ez field) matched K-V distribution

Driver: either laser or bunch, in the linear regime

0.3

Centroid offset $|x_c(\xi, z)|$ (μm)

1.0

Office of

Science

0.1

RKELEY LAB

R. Lehe (rlehe@lbl.gov)

FACET II workshop

20

Conclusion

New analytical formula, shows that the beam-hosing instability saturates in the presence of a betatron frequency chirp along the witness beam

 In the quasi-linear regime, betatron chirp occurs naturally, even for a monoenergetic bunch.

 Thus, the beam-hosing instability in the quasi-linear regime is much less severe than predicted by standard hosing scalings.

Office of

Science

Thank you for your attention

This work was partly supported by the Director, Office of Science, Office of High Energy Physics, U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231, including from the Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab.

