

FACET-II Diagnostics Overview

FACET-II Science Workshop October 17 – 21, 2017

Nate Lipkowitz Engineering Physicist Diagnostics & Controls

FACET-II Stage 1 FY17-19

- Goal: Deliver compressed electron beam from S10 to experiments in S20
- Major upgrade: Electron beam photoinjector in Sector 10
- Scope: Injector, shielding wall in S10, bunch compressors in S11 (BC11) and S14 (BC14), beam diagnostics

FACET-II Diagnostics Injector e- Diagnostics Overview

Provide to linac a beam of known:

- Charge
- Arrival time
- Bunch length & distribution
- Energy, energy spread & distribution
- Transverse emittance (projected and sliced)

SLAC

S-band TCAV

- 1.4 MV crest deflection
- 2 MW from klystron 10-5

The most useful LCLS injector diagnostics are reproduced for the FACET-II injector

FACET-II Diagnostics Linac and Bunch Compressors

- 70 BPMs and 4 wire scanners exist and in use at FACET
- BC11 and BC14 have all-new diagnostics
- TCAV after BC14
- 9-foot instrumentation girders between sectors

Linac diagnostics will mostly be reused in place or repurposed from FACET

FACET-II Diagnostics Linac L1, BC11 and BC14 Overview

BC14

Key BC20 / FACET Existing Diagnostics

FACET-II Science Workshop, October 17-21, 2017

FACET-II Stage 1 Diagnostics Overview

Standard e- beam diagnostics (existing and new)

	Injector	L1 & BC11	BC14	L2 & L3	BC20 & IP	Total (Stage 1)
BPM	12	<mark>6 +</mark> 3	<mark>4</mark> + 2	66	19	112
Toroid	3	1	1		5	10
Wire scanner	1	1		<mark>4</mark> + 4	2	12
Profile monitor	5	2	2	1	8	18
TCAV	1 S		1 S		1 X	3
Bunch Length	1	1	1		1	4
Collimator		1	2	2	1	6

FACET-II re-uses existing FACET e- beam diagnostics where possible

FACET-II Stage 2 FY17-20

- Goal: Deliver compressed electron beam from S10 to experiments in S20
- Major upgrade: Positron damping ring
- Scope: Damping ring, positron bunch compressor & return line

FACET-II Diagnostics Positron Transport Lines Overview

FACET-II Diagnostics Positron Transport Lines Overview

Provide to linac a beam of known:

- Charge
- Energy, energy spread & distribution
- Transverse emittance (projected)
- Bunch length

PEC diagnostics characterize positron beam before injection into linac at BC11

FACET-II Stage 2 Diagnostics Overview

Standard e+ beam diagnostics (existing and new)

	e+ source	e+ Return Line	Damping Ring	e+ Extraction	Stage 2 Total	Project Total
BPM	46	62 + <mark>35</mark>	28	22	193	305
Toroid	5	3 + 2		3	13	23
Wire scanner		1		1	2	14
Profile monitor	4 + 1	2 + 5		5	17	18
TCAV					0	3
Bunch Length				1	1	5
Collimator	1			1	2	8
FACET-II re-uses existing FACET e+ beam diagnostics where possible						

SYAG wiggler stripe spectrometer

FACET-II Diagnostics Beam Position Monitor Processors

Linac, BC11, BC14, e+ source, e+ return

CAMAC 605/972 SLC,1983 Hybrid mixer 3x self-triggering track-and-hold 10-bit gated ADC 50 µm precision ~800 pC min.

BC20 + IP

CAMAC NiTnH FFTB, 1991 Preamp/stretcher 2x self-triggering track-and-hold 16-bit latching ADC < 5 µm precision ~100 pC min.

FACET IP

VME XTA BPM LCLS/XTA, 2008 4x 140 MHz BP filter + 4x preamp ~100 MHz 12-bit digitizer < 5 µm precision

~10 pC min.

e- Injector

SLAC

µTCA BPM LCLS-II (Cu), 2013 4x 300 MHz BP filter + 4x preamp ~100 MHz 16-bit digitizer < 5 µm precision

- $\sim 10 \text{ pC}$ min
- ~10 pC min.

BPMs are the primary diagnostic for monitoring, feedback and tuning

FACET-II Diagnostics **Relative Bunch Length Monitors**

Coherent edge radiation monitor

- Mirror + pyrometer •
- *f* > 300 GHz
- I_{pk} > 300 A
- \rightarrow BC11, BC14 \rightarrow BC20 (existing)

Mirror

Wall gap monitor

- Ceramic gap + diode
- *f* < 300 GHz
- $I_{pk} < 300 \text{ A}$
- Injector, e+ system \rightarrow

SLAC

Non-destructive, pulse-by-pulse bunch length monitoring, but need TCAV calibration

Bunch Length Monitors

Pyroelectric bunch length monitor modeled after LCLS BC1/BC2.

Relative diagnostic, works well for finding and maintaining peak compression.

FACET-II Diagnostics Toroid Beam Charge Monitors

Resonant toroid current transformers with calibration winding

SLAC

CAMAC TCM module + SLAC preamplifier – used at FACET

- Rectifier to S&H circuit to 10-bit gated ADC
- ~ 5% absolute accuracy and precision at 3 nC

LCLS upgrade: low-noise preamp + twinax cable + 12-bit VME ADC

<1 % accuracy, <0.2% noise at 150 pC

Toroids in FACET-II monitor total beam charge at boundaries of functional areas

FACET-II Diagnostics Linac Emittance Measurement

Location	Sector	Energy [GeV]	σ _x (µm)	σ _y (μm)	# of wire scanners	# existing
After BC11	Sector 11	0.335 – 1.0	145-215	110-215	4	4
End of L3	Sector 19	9.0 - 10.0	35-57	38-56	4	1

- Relocate wire scanners from Sectors 1 & 2 to FACET-II linac
- Replace standard 10-foot RF structures with modified 9.4-foot sections

Wire scanners characterize emittance preservation across linac-BC system

FACET-II Diagnostics Guidelines behind diagnostic choices

BPM in every focusing magnet + key dispersive locations Toroids upstream/downstream of every transport line + BC At each BC:

TCAV + relative BLM

Energy spread screen/wire, BPM, collimator pair

Multi-profile emittance measurement brackets linac

 \rightarrow Wire scanners after BC11, before BC20

x-y magnet mover at every sextupole

Questions

FACET-II Diagnostics **UV Drive Laser and IR Heater Laser**

Key LCLS drive laser diagnostics:

- Transverse distribution (virtual cathode camera) •
- Pulse length (cross correlator) •
- Transport cameras \rightarrow steering feedback •
- Beam charge \rightarrow intensity feedback, QE • monitoring

X-Corr Scan Coherent2 31-Aug-2015 17:04:12

 $\tau_{STD} = 0.96 \text{ ps}$

 $\tau_{\rm FWHM} = 2.41 \, \rm ps$

60

50

20

10

Signal (mV) 30

FACET-II Science Workshop, October 17-21, 2017

Existing Linac BPMs

Existing linac CAMAC BPM processors date from SLC

- 70 BPMs in FACET-II linac 8 per sector
- Broadband, external gate can resolve bunches 60 ns apart

Existing BPMs are sufficient for interlaced e- / e+, but not co-accelerated beams

FACET-II Diagnostics YAG/OTR Profile Monitors

Ce:YAG scintillator crystal Al/Ti OTR foil Phosphor

- Transverse profile/emittance
 measurements
- Energy spread (BCs)
- Bunch length (TCAVs)

YAG: low E, dispersed beam OTR: high E, focused beam

→ COTR is a problem for compressed bunches

Profile monitors are most efficient and intuitive transverse diagnostic available

CCD

Filters

Illumination

Beam splitter

Reticule

CCD

Lens

Window

FACET-II Diagnostics COTR from compressed bunches - LCLS

- Microbunched structure at optical wavelengths \rightarrow coherent OTR emission
- Ways to mitigate this effect for YAG screens: screen tilt, fast camera gating
- Dispersed beams, e.g. E-spread or TCAV screens

Strong COTR from compressed bunches \rightarrow use wire scanners after BC11 for focused beams

BC20 Diagnostics Controls

BPMs: 21 FFTB "NiTnH" CAMAC processors in FACET

- 24 in BC20E + BC20P + FFS
- Add 6 modules to existing crates

Toroids: 5 TCM CAMAC modules

• Add 2 modules to existing crates

YAG screen:

 Add camera & POE to spare camera server channel

Use existing controls for diagnostics - add channels and run cable if necessary

Bunch Length Monitors

Pyroelectric bunch length monitor modeled after LCLS BC1/BC2.

Relative diagnostic, works well for finding and maintaining peak compression.

FACET-II Diagnostics **Transverse RF Deflecting Cavities (TCAV)**

	Location	Name	Length [m]	∫ _{RF} [MHz]	σ _z [µm]	Screen
	Injector	TCAV0	0.55	2856	800	OTR04
	After BC14	TCAV3	2.4	2856	30	15-9
	End BC20	XTCAVE	0.5	11424	1	IP2B
Injector 55cm S-band TCAV						

• Self-calibrating (f_{RF} well known)

TCAVs before/after linac, BC14 for measurement of bunch length & distribution

Designed for LCLS-II

XTCAV horizontal at dump

FACET-II Diagnostics BC11 / BC14 Collimation

SLAC

Collimation in bunch compressors gives additional control of longitudinal distribution

FACET-II Diagnostics Synchrotron Light Monitor

SLAC

Synchrotron light monitor for transverse/longitudinal study of stored beam

FACET-II Science Workshop, October 17-21, 2017

FACET-II Diagnostics Positron Damping Ring - BPMs

Tune monitor and envelope current monitor are derived from BPM signals

BC20 Stage 3 Beamline Layout

- Existing stands and tables
- Models / bounding boxes of actual magnets

BEAM DIRECTION

SLA

BC20 Diagnostics

- X-ray stripe (Wiggler + YAG) energy spectrum measurement
- Resonant toroid BCM at entrance and exit of chicane
- Stripline BPM near each focusing element
- TCAV relocated downstream to common line

Beamline diagnostic devices are largely re-used from FACET chicane

2-Bunch BPM Design

Signal on electrode:

- Proportional to I_{beam}, x_{beam}
- Normalize to bunch length monitor

$$x^{+} = \frac{1}{I^{+}S_{x}} \left(\frac{R^{+} - L^{+}}{R^{+} + L^{+}} \right) \ x^{-} = \frac{1}{I^{-}S_{x}} \left(\frac{R^{-} - L^{-}}{R^{-} + L^{-}} \right)$$

$$x_E = x^+ + x^ x_P = x^+ - x^-$$

Mix stripline signals with reference RF to resolve 2-bunch orbit in linac

2-Bunch BPM Design

2-bunch resolution < 100 µm using LCLS/LCLS-II electronics

FACET-II Diagnostics Overview Hybrid Control System Architecture

Software Energy and Orbit Stabilization Feedbacks

Matlab/python scripts regulate beam parameters at individual key locations: Energy \uparrow and bunch length \uparrow : upstream RF phase & amplitude Orbit feedback \uparrow : use 4 upstream correctors, stabilize [x x' y y']

SLAC

Simple feedbacks at key locations stabilize drift on 5-10 second time scale

Software

Physics HLAs for Measurement and Tuning

Software developed for FACET (and LCLS) automates many standard tuning and setup tasks:

- Troubleshooting correlation plot, jitter
- Characterization profile monitor, wire scans, emittance, bunch length
- Corrections dispersion, matching, phase scans
- Configuration changes IP config, longitudinal setup

SLAC

Matlab physics applications provide online analysis tools and iterative correction for fast, interactive tuning

FACET-II Diagnostics Recovered components from Sector 0-10

Beamline components:

13 wire scanners

40 stripline BPMs (PRL)

13 toroids (various)

24 ion chambers

5 profile monitors (PRL)

1 gap BLM

1 faraday cup

4 stoppers – tune-up dump

2 2-jaw collimators

2 fixed collimators

Controls hardware: 116 CAMAC crates 79 CAMAC PDU/STB (timing) 13 FIDO (timing) 119 CAMAC DAC (magnet) 179 CAMAC SAM (magnet, analog) 140 CAMAC 605 BPM 97 CAMAC 972 BPM 30 CAMAC TCM (toroid)

Linac Low-level RF – L1S

PAC & PAD:

- Phase & Amplitude
 Controller/Detector
- Feedback in IOC

Linac has installations at:

- L1S (2 stations)
- L1X linearizer
- TCAVs (2 stations)

PAC only installations:

- L2 phase reference
- L2 energy feedback
- L3 energy feedback

SLAC

PAC/PAD LLRF control and feedback wraps around existing RF hardware