

FACET-II Emittance Measurements

Kavli Auditorium, SLAC

Brendan O'Shea October 17, 2017

FACET Spectrometer

- Calibration of ~13 um/pixel
- Resolution dominated by pixel size
- Demand Imaging in x&y (energy) direction, M₁₂=M₃₄=0
- Two options a priori: change light optics or magnetic optics

Measuring Emittance

- Butterfly technique for emittance measurement relies on imaging the beam waist, measuring contrast between waist and highest/lowest energy
- Emittance at FACET-II is ~10 times better than at FACET
 - FACET : σ_{x0}~91 μm (ε_{xn}=30 μm)
 - FACET II : σ_{x0}~14 μm (ε_{xn}=3 μm)
 - Injection Experiment : σ_{x0} ~8.4 μ m (ϵ_{xn} =0.1 μ m)
 - Lower energy though...

Measurement Experience at FACET

5

140

E210

- Make assumptions about divergence before window
- Tune model to best fit data
- low-emittance, low-energy beams difficult due to increased scattering

E217

- Incorporate plasma ramps
- Small emittance challenging
 Butterfly for variation in ε_n, with σ_r=3μm
 200
 100
 100

Energy (GeV) N. Vafaei-Najafabadi FACET-II Science

Workshop 2016

E200

SLAC

- Scan M12
- Reduce chromaticity effect on measurement
- Multi-shot complement to butterfly

B. O'Shea, FACET-II SCIENCE WORKSHOP, Oct. 17, 2017

Measuring Emittance at FACET-II

- Get rid of Be window
- Move diagnostic upstream of 5 mm AL window, inside vacuum

$\sigma_{\delta}[\%] = 0.5$	$\epsilon [\mu m] 0.1$	0.3	1	3
$egin{smallmatrix} eta\left[cm ight]\ 1 \end{split}$	$\sigma_{x,100}{=}28.3$	15.96	26.27	44.39
	$\sigma_x = 1.21$	2.097	3.828	6.631
2.5	6.671	10.78	19.09	32.26
	1.914	3.315	6.053	10.48
5	5.152	8.892	15.75	27.79
	2.707	4.689	8.561	14.83
10	4.866	8.403	15.88	27.51
	3.828	6.631	12.11	20.97

Will work with off the shelf optics

SLAC

Requires careful balance of photons vs resolution

All else require QS0

Define Resolution

- There are a few definitions of resolution, we define as:
 - The point spread function (PSF) of a lens

$$\frac{1}{\sqrt{2\pi(\sigma_b^2 + \sigma_{psf}^2)}} e^{-\frac{x^2}{2(\sigma_b^2 + \sigma_{psf}^2)}} = \frac{1}{2\pi\sigma_b\sigma_{psf}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2\sigma_b^2}} e^{-\frac{(x-y)^2}{2\sigma_{psf}^2}} dy$$

beam size lens PSF

0.8

0.6

0.4

-5

x [µm]

- Resolution measured using an Air Force 1951 Target
- σ_{psf} is <u>half</u> target line width when contrast is 50%
- In practice resolution limited by lens and pixel size

Diffraction Theory of a Simple Lens

Approximate Intensity as Gaussian:

$$\sigma_{psf} \simeq \frac{1.3\lambda}{2\pi} (|M|+1) \frac{f}{R} = 0.41 * fNum$$

Measurement Limits due to Pixel Size

- σ_{PSF} can be removed, but errors add up
- Can't measure a beam size, σ_x , that is smaller than a pixel size, no matter how small σ_{PSF}

Measure to confirm Real Lens ~= Single Lens

SLAC

$$\sigma_{psf} \simeq \frac{1.3\lambda}{2\pi} (|M|+1) \frac{f}{R} = 0.41 * fNum$$

$$res = \sqrt{p^2 + (b * fNum)^2}$$

	p [µm]	b [<i>µ</i> m]
Manta	3.6	0.42
PCO	6.22	0.42

Manta Pixel Size: 3.75 μ m PCO Pixel Size: 6.5 μ m

Measured:

Tokina 105mm, Nikon Nikkor 200mm, Nikon Nikkor 60mm Canon 135 f/2, Nikon 50mm

Depth of Field

Camera Choice

SLAC

• Would like to use PCO/Hamamatsu

	Pixel Size [µm]	Resolution [µm]	Bit Depth	Detector Size [mm x mm]	Noise [counts]	Working f#	Counts/ Photon
PCO/ Hamamatsu (M=2)	6.5	4.1	16	8.3 x 7.0	0.4	12	0.87
Manta (M=1)	3.75	4.1	12	4.8 x 3.6	1.3	8	0.26

Table assumes Nikon Nikkor 200 mm f/4 lens

Options for Magnetic Optics

- Magnification M₁₁ can be increased by moving the plasma output closer to QS1 (@ 20 GeV)
 - Nominal magnification M₁₁~7
 - Maximum magnification M₁₁~11
- We can bring back QS0
 - Magnification can be M_{11} ~17

Distance from 1995.01 [m]

Summary

- 0.3 μm normalized emittance can be measured when the beta function is 5 cm, 0.5% energy spread by only changing light optics
 - Any or all of these parameters can be bigger
- Injected beams will have to be examined
 - lower energy does help when thinking about QS0
- 0.05-0.1 μ m normalized emittance can be measured when the beta function is 5 cm, if QS0 is used (M₁₁=15)
- PCO/Hamamatsu sCMOS is the better camera for the measurement, because of sensitivity

Backups

Witness Bunch Emittance Table (M = 15)

 $\sigma_{\delta}[\%] = 0.5$ $\epsilon[\mu m]$ 0.050.50.1 1 $\beta[cm]$ $\sigma_{x,100} = 5.56$ 7.29415.3121.491 $\sigma_x = 1.7$ 2.3985.3617.5824.1825.77512.9318.292.52.6813.7918.47711.99 6.29219.414.34913.73 $\mathbf{5}$ 5.3613.79111.9916.955.6758.02517.9425.3810 5.3617.58216.9523.98