Measuring very low emittances using betatron radiation

Nathan Majernik October 19, 2017 FACET-II Science Workshop

Plasma photocathode injection

- "Trojan horse"
 - High and low ionization threshold gases
 - Blowout bubble formation followed by laser pulse to spawn ultracold electrons in bubble
- ε_n ~ 100 nm-rad
- Wakeless plasma at end
 - Constant energy, same radial fields

Betatron oscillations

Unmatched condition. Not to scale.

Blowout regime

Linear (radial) field $\vec{E} = \frac{-n e \vec{r}}{2 \epsilon_0}$

Harmonic beam oscillations $k_{\beta} = \frac{k_{\beta}}{\sqrt{2\gamma}}$

Injection phase space

- Laser releases electrons from cold plasma corresponding to focus profile and approximately zero velocity
- Over the duration of the pulse (~30fs) these electrons begin betatron oscillation while new electrons are still being introduced
- "Paint" transverse phase space with matched beam

Typical parameters

• Plasma: 10¹⁷-10¹⁸ cm⁻³

 $-\lambda_p = 30 \mu m$

- 1-20 GeV
 - $\lambda_{\beta} = 2mm$
- 100 nm-rad
- Fundamental radiation at ~3Å (4keV)

Betatron spectrum

• Plasma wiggler characterized by *K*, the undulator parameter:

 $K = \frac{2 \pi \gamma x_0}{\lambda_{\beta}} \simeq 1.33 \text{ x } 10^{-10} \gamma^{0.5} n_{\rm e}^{0.5} \left[\rm cm^{-3} \right] x_0 [\mu \rm m]$

 For K << 1 ("undulator regime") this term dominates spectrum. As K increases, contributions of harmonics also increase

Approaches synchrotron spectrum

• Angular and *K* dependence of fundamental radiation wavelength: $\lambda_r(\theta) = \frac{\lambda_\beta}{2\gamma^2} \left(1 + \frac{1}{2}K^2 + (\gamma\theta)^2\right)$

Spectrum by K

K = 0.01

Simulating idealized undulator in SPECTRA (near axis)

Betatron amplitude PDF

 Map 4D transverse phase space to probability density function in r_{osc}: $r_{\rm osc} = \sqrt{r_0^2 + v_r^2} \, \frac{2\gamma}{\omega_p^2}$ PDF [a.u.] $\epsilon = 0.1 \,\mu \text{m}$ -rad $\epsilon = 0.15 \,\mu \text{m-rad}$ $\epsilon = 0.2 \,\mu \text{m-rad}$

0.2 0.4 0.6 0.8 r_{osc} [μm]

Signal superposition

• Take the r_{osc} PDF, transform into K PDF

 $K = \frac{2 \pi \gamma x_0}{\lambda_{\beta}} \simeq 1.33 \text{ x } 10^{-10} \gamma^{0.5} n_{\rm e}^{0.5} \left[\rm cm^{-3} \right] x_0 [\mu \rm m]$

• Weight each betatron spectrum at *K* according to this PDF and sum

Emittance measurement Flux [a.u.] 15 10 $\epsilon = 25 \text{ nm} - \text{rad}$ $\epsilon = 50 \text{ nm}$ -rad 5 Energy [eV] 40 000 10000 30 0 00 20 000

Increasing emittance decreases fundamental frequency and broadens the light from harmonics

Caveat: Beta matching

Flux [a.u.]

12

10

2

- Beta mismatches introduce a small but potentially measurable change to the spectrum
- Matched β function
 β 20% above match
- β 20% below match
- Our measurement is an upper bound on the emittance

Beyond emittance

 Ideally, each r_{osc} value can be thought of as identifying a unique basis vector of the spectrum

$$r_{\rm osc} = \sqrt{\left(x_0^2 + y_0^2\right) + \frac{2\gamma}{\omega_p^2} \frac{\left(v_x \, x_0 + v_y \, y_0\right)^2}{\left(x_0^2 + y_0^2\right)}}$$

 This simplification would allow a complete reconstruction of the densities of each r_{osc} band

Diagnostic schematic

High energy diagnostics

Bent crystal

Stack calorimete

- Detection from
 100 keV to >1 MeV
- Headed by Dr. Litos and Corde
- Stack calorimeter
 - Identify high K spectrum (e.g. driver bunch) cutoff energy $\epsilon_c[keV] = 5 \cdot 10^{-21} \gamma^2 n [\text{cm}^{-3}] x_0[\mu\text{m}]$
- Multi-screen LANEX system
 - Angular information
 - Limited spectral information

Stack calorimeter

• Precursor from E200. Screen and stack calorimeter to characterize betatron radiation:

- Upgrades in new version:
 - Actuated gap for downstream collimation
 - Angular information from 2D photodiode array (resolution limited by EM shower)

Low energy diagnostics

- Double differential bent crystal spectrometer
- Crystal disperses in bend plane but retains angular information in vertical plane

Double differential spectrum

- Results from ICS experiment
- Recall: $\lambda_r(\theta) = \frac{\lambda_\beta}{2\gamma^2} \left(1 + \frac{1}{2}K^2 + (\gamma\theta)^2\right)$

Crystal selection

- Cover 4-200 keV with 3 interchangeable crystals while keeping constant optical paths (i.e. no need to move detector)
 - 55-200 keV with 3.1Å spacing (natural crystal candidate)
 - 15-55 keV with 11.5Å spacing (natural or synthetic)
 - 4-15 keV with 42Å spacing (existing Si/Mo synthetic from BNL experiment)
- Numbers assume the specified spectrum will be spread over ~30mrad of detector

Resonant betatron excitation

- Overlay undulator field on ion channel
- Match undulator and plasma betatron wavelengths for resonant amplitude growth

- Amplitude (beam centroid): $\frac{qB_0}{2\gamma mck_u^2}\sqrt{1+k_u^2z^2}$.

- Effective field: $B_{eff} = \frac{B_0}{2} \sqrt{1 + (numPeriods)^2}$

• Already expect to have wakeless tail to PWFA. Just need to add undulator

RBE simulation

- Linear amplitude growth
- Confine with electric field, boost with magnetic field
- Amplitude limited only by bubble radius

		0.0	0032				
		10	0030				
		0.0	0028				
		0.0	0026				
			F	0.042	0.044	 0.046	0.048
Plasma ion species	Ar+	0.0	0024 -				
Plasma density	10 ¹⁵ cm ⁻³		F				
Undulator magnetic field amplitude	1 T	0.0	0022				
Undulator period	3 cm		ţ				
Drive beam energy	20 GeV	0.0	0020 -				
Drive beam charge	3.2 nC		ŀ				
Drive beam dimensions σ_x, σ_z	30 µm, 30 µm	D.C	0018				
Witness beam energy (negligible charge)	250 MeV	0.4	[
	·						

Linear RBE... stepping stone to helical

• Polarized gammas from helical RBE configuration generate polarized positrons

 E166 - "The value of K in the present experiment was small, about 0.17, because of practical limitations to the current in the (pulsed) undulator." [Alexander2009]

Summary

- System proposed to measure low emittance beams (<100 nm-rad)
- Non-destructive
- Single shot
- Comprised of high energy and low energy diagnostics
 - Calorimeter and multi-filter
 - Bent crystal spectrometer
 - Covering 4 keV through >MeV
- Based on existing systems (E200 and BNL ATF)
- Easily extend system to diagnose resonant betatron excitation