

Plasma Ion Motion Induced Emittance Growth In Nonlinear Plasma Wake Field Accelerator

Weiming An University of California Los Angeles

anweiming@ucla.edu

Motivation

PWFA Linear Collider

Conceptual design of a 10 TeV PWFA-LC

Luminosity $10^{34} \text{ cm}^{-2}\text{s}^{-1}$ \checkmark $< 0.1 \text{ mm} \cdot \text{mrad}$ $(\sqrt{\epsilon_N x \epsilon_N y})$ $(\sqrt{\epsilon_N x \epsilon_N y})$ and $(\sqrt{\epsilon_N x \epsilon_N y})$ Charge $\ln C$

* E.Adli et al., IPAC 2014

UCLA

Electron Acceleration in PWFA

Plasma Ion Motion in PWFA

UCLA

Plasma Ion Motion in PWFA

* J. B. Rosenzweig et al. Phys. Rev. Lett. 95, 195002, 2005

TABLE I.	Beam	and	plasma	parameters	for	linear	collider	
afterburner,	derived	d from	n Ref. ['	7].				

N_b (drive, accelerating)	$1.5 \times 10^{10}, .5 \times 10^{10}$
rms bunch length σ_z	35 µm
γ (drive, accelerating)	$\leq 1 \times 10^6, \leq 2 \times 10^6$
Accelerated beam $\varepsilon_{n,(x,y)}$	4×10^{-6} , 9.6×10^{-6} m rad
Drive beam $\varepsilon_{n,x}$	6.2×10^{-7} m rad
Initial ion (electron) density n_0	$0.9 \times 10^{16} \text{ cm}^{-3}$
Ion charge state Z	1 (hydrogen)
Matched β function β_{eq}	3.1 cm
Normalized beam density n_b/n_0	1.5×10^{5}

$$n_p = 1.0 \times 10^{16} \text{ cm}^{-3} \text{ Hydrogen}$$

FIG. 1 (color). Surface plot of ion density distribution in (ζ, r) , as simulated by OOPIC for drive beam conditions of Table I.

[7] Tor O. Raubenheimer, "An Afterburner at the ILC- The Collider Viewpoint", AIPCP 737, 86 (2014)

UCLA

Slice Beam Evolution

UCLA

Slice Beam Evolution

10

0

-5

-10

Plasma Ion Motion in PWFA

* J. B. Rosenzweig et al. Phys. Rev. Lett. 95, 195002, 2005

FIG. 1 (color). Surface plot of ion density distribution in (ζ, r) , as simulated by OOPIC for drive beam conditions of Table I.

$$d\varepsilon_{n,x}/dz \simeq 6 \times 10^{-4} \text{ m rad/m}$$

* R. Gholizadeh et al. Phys. Rev. Lett. 104, 155001, 2010

UCLA

Simulation Using QuickPIC

0.2

0.0

-0.2

 $X [c / \omega_p]$

3D Simulation Big Challenge

 $\sigma_r = 0.1 \ \mu m, \ \sigma_z = 10.0 \ \mu m, \ N = 1.0 \ x \ 10^{10}$ $n_b/n_p = 63500 >> m_{ion}/m_e = 1836$

400 μm x 400 μm x 300 μm Box

8192 x 8192 x 1024 Cells

12 μ m x 12 μ m x 60 μ m Box

0.5

1.5

1.0

-0.5

-1.5 -1.0

0.0

ξ [c / ω_p]

Ion Column

200

150

50

0

0EP2 [n ^p]

-2

-4

-6

-8

-10

-12

-14

QEP1 [n p]

4096 x 4096 x 512 Cells

Simulation Using QuickPIC

Two-Bunch

Trailing-Bunch-Only

Simulation Using QuickPIC

Comparison of Longituidinal and Transverse Lineouts

Drive Beam : $\sigma_r = 1 \ \mu m$, $\sigma_z = 30.0 \ \mu m$, $N_1 = 3.0 \ x \ 10^{10}$, $\epsilon = 10 \ mm \cdot mrad$ Trailing Beam: $\sigma_r = 0.1 \ \mu m \ (0.006 \ k_p^{-1})$, $\sigma_z = 10.0 \ \mu m$, $N_2 = 1.0 \ x \ 10^{10}$, $\epsilon = 0.093 \ mm \cdot mrad$ Distance between two beams : 115 \ \mm m; Plasma Density : 1.0 \ x \ 10^{17} \ cm^{-3}

UCLA Plasma Ion Motion in a PWFA-LC Stage

The accelerating field of the plasma wake

*W. An et al. Phys. Rev. Lett. [18, 24480], 2017 $\Delta E_z = \int dr \partial F_f / \partial \xi \approx \Delta r \Delta F_f / 2\Delta \xi$

The Evolution of the electron beam's emittance

Focusing Force

Emittance growth of the trailing beam

Drive Beam : $\sigma_r = 1 \ \mu m$, $\sigma_z = 30.0 \ \mu m$, $N_1 = 3.0 \ x \ 10^{10}$, $\varepsilon = 10 \ mm \cdot mrad$ Trailing Beam: $\sigma_r = 0.1 \ \mu m \ (0.006 \ k_p^{-1})$, $\sigma_z = 10.0 \ \mu m$, $N_2 = 1.0 \ x \ 10^{10}$, $\varepsilon = 0.093 \ mm \cdot mrad$ Distance between two beams : 115 \ \mm m Plasma Density : 1.0 \ x \ 10^{17} \ cm^{-3} (H Plasma)

Ion density peak

Emittance growth of the trailing beam

Drive Beam : $\sigma_r = 1 \ \mu m$, $\sigma_z = 30.0 \ \mu m$, $N_1 = 3.0 \ x \ 10^{10}$, $\varepsilon = 10 \ mm \cdot mrad$ Trailing Beam: $\sigma_r = 0.1 \ \mu m \ (0.006 \ k_p^{-1})$, $\sigma_z = 10.0 \ \mu m$, $N_2 = 1.0 \ x \ 10^{10}$, $\varepsilon = 0.093 \ mm \cdot mrad$ Distance between two beams : 115 \ \mm m Plasma Density : 1.0 \ x \ 10^{17} \ cm^{-3} (H Plasma)

 $P_{max} / P_0 \sim 5 >> \epsilon_{Nf} / \epsilon_{N0} \sim 2$

Particle's trajectory

k_DXI

>

Emittance in the equilibrium state

$$\epsilon_{N} = \sqrt{\langle x^{2} \rangle \langle p_{x}^{2} \rangle - \langle xp_{x} \rangle^{2}}$$

$$\epsilon_{Nf} = \sqrt{\langle x^{2} \rangle_{f} \langle p_{x}^{2} \rangle_{f}}$$
Phase Space of plxI
Time = 0.00 [1/a_p]
0 (1/a_p)
0 (1/a

Emittance in the equilibrium state

 $< x^2 >_f = < \frac{\int_{osc} x^2 dt}{T_{osc}} >$

UCLA

 N_{x0} does not change because phase space trajectories do not cross with each other.

Calculating N_{x0}

$$\langle x^{2} \rangle_{f} = \langle X_{\text{ave}}^{2} \rangle = \frac{1}{N} \int_{0}^{\infty} dx_{0} N_{x_{0}} X_{\text{ave}}^{2}(x_{0})$$

$$\langle p_{x}^{2} \rangle_{f} = \frac{1}{N} \int_{0}^{\infty} dx_{0} N_{x_{0}} P_{\text{ave}}^{2}(x_{0})$$

$$N_{x0} = 4 \int_{0}^{x_{0}} f_{0}(x, p_{x}) \frac{dp_{x}}{dx_{0}} dx$$

$$X_{\text{ave}}^{2} = \frac{\int_{0}^{x_{0}} \frac{dx}{v_{x}} x^{2}}{\int_{0}^{x_{0}} \frac{dx}{v_{x}}} = \frac{\int_{0}^{x_{0}} dx x^{2} / \sqrt{(\psi(x,\xi) - \psi(x_{0},\xi))}}{\int_{0}^{x_{0}} dx / \sqrt{(\psi(x,\xi) - \psi(x_{0},\xi))}}$$

$$P_{\text{ave}}^{2} = \gamma \frac{\int_{0}^{x_{0}} dx \sqrt{(\psi(x,\xi) - \psi(x_{0},\xi))}}{\int_{0}^{x_{0}} dx / \sqrt{(\psi(x,\xi) - \psi(x_{0},\xi))}}$$

$$\partial p_{x} / \partial x_{0} = \sqrt{\gamma} F_{f}(x_{0}) / \sqrt{2(\psi(x) - \psi(x_{0}))}$$

UCLA

UCLA

UCLA Ion Motion Driven by Asymmetric Trailing Beam

6

2

05

30

15

20.02

0.01 0.00 0 Y 16/wh

lc | ab

40

20

10 000

010

0.05

0.00 0.05 y 10100

010

In Li, the emittance in x does not change, and in y direction it only increase by 20%.

In H, the emittance in x increase by 10%, and in y direction it increases by 70%.

The emittance growth can be mitigated.

