

Experimental science goals, beam requirements, detection/hardware needs

FACET-II Call for Proposals Produced Strong Interest

https://portal.slac.stanford.edu/sites/ard_public/facet/newnav/Pages/tf/facet/FACETCurrentResearch.aspx

PWFA Beam Quality (5 proposals, 2 'Excellent')

 PIs: Andonian, Joshi/Rosenzweig (UCLA), Hogan (SLAC), Litos (UC Boulder), Adli (U Oslo), Nagaitsev (FNAL), Gessner (CERN)

PWFA Injection (6 proposals, 1 'Excellent')

 PIs: Hidding/Ullmann/Habib (U Strathclyde), Vafei (Stony Brook), Zhang/Xu (UCLA), Corde (Ecole Polytechnique), Rosenzweig (UCLA)

PWFA Other (9 proposals, 2 'Excellent')

 PIs: Corde (Ecole Polytechnique), Joshi/Marsh/Rosenzweig (UCLA), Litos (UCBoulder), Fiuza/Marinelli (SLAC), Heinemann (DESY), Hidding/Habib (U Strathclyde)

Machine Learning & Diagnostics (11 proposals, 1 'Excellent')

 PIs: Osterhoff (DESY), Marksteiner/Scheinker (LANL), Emma/O'Shea/White (SLAC), Downer (UTAustin), Hidding/Scherkl/Sutherland (U Strathclyde), Fiorito, Andonian/Ruelas (Radiabeam)

Other: Dielectrics, Extreme Beams...(4 proposals, 1 'Excellent')

 PIs: Meuren (PPPL), Litvinenko (Stonybrook), O'Shea (SLAC), Rosenzweig (UCLA), Chen (UPenn)

4

FY20 experimental schedule will be organized around the seven experiments that received an 'Excellent' ranking by the FACET-II PAC

-SLAC

PWFA Experimental Program at FACET-II is Motivated by Roadmap for Future Colliders Based on Advanced Accelerators

Advanced Accelerator Development Strategy Report

DOE Advanced Accelerator Concepts Research Roadmap Workshop February 2–3, 2016

http://science.energy.gov/~/media/ hep/pdf/accelerator-rd-stewardship/ Advanced_Accelerator_Development_ Strategy_Report.pdf

E. Adli et al., ArXiv 1308.1145 J. P. Delahaye et al., Proceedings of IPAC2014

Key elements for the next decade:

- Beam quality focus on emittance preservation at progressively smaller values
- Positrons use FACET-II positron beam identify optimum regime for positron PWFA
- Injection ultra-high brightness sources, staging studies with external injectors

E-300: Energy Doubling of Narrow Energy Spread Witness Bunch while Preserving Emittance with a High Pump-to-Witness Energy Transfer Efficiency in a Plasma Wakefield Accelerator

See presentation by Chan Joshi today 4:00PM

Science deliverables:

- Pump depletion of drive beam with high efficiency & low energy spread acceleration
- Beam matching and emittance
 preservation

Key upgrades:

- Photoinjector beam
- Matching to plasma ramps
- Differential pumping
- Single shot emittance diagnostic

Plasma source development:

- Between 10-20µm emittance, beam expected to ionize He in down ramp
- Next step laser ionized hydrogen source in development through E-301

C Joshi et al 2018 Plasma Phys. Control. Fusion 60 034001

Flexibility of the photo-injector allows optimal beams for PWFA studies

Beam Loading in Non-linear Wakes

Theoretical framework, augmented by simulations, provides a recipe

Roadmap emphasizes the need to answer the question: Is it possible to strongly load the longitudinal wake without strong transverse wakes and BBU?

SLAC

- Relativistic Beams provide a non-evolving wake
- Possible to nearly flatten accelerating wake even with Gaussian beams
- Gaussian beams provide a path towards $\Delta E/E \sim 10^{-2}$ 10⁻³
- Applications requiring narrower energy spread, higher efficiency or larger transformer ratio \longrightarrow Shaped Bunches $\mathcal{L} = \frac{P_b}{E_h} \left(\frac{N}{4\pi\sigma_r\sigma_u} \right)$

See: M. Tzoufras et al, Phys. Plasmas **16**, 056705 (2009); M. Tzoufras et al, Phys. Rev. Lett. **101**, 145002 (2008); W. Lu et al., Phys. Rev. Lett. **96**, 165002 (2006) and References therein

E-302: Transverse Wakefields and Instabilities in Plasma Wakefield Accelerators

IVI.J. Hogan, FACET-

Ion Motion

a strong component of

FACET-II Program

W. An et al. PRL 118, 244801 (2017) UCLA

Instability Possibly Strong Enough to Measure – Need Good Diagnostics and Development of New Techniques

Optical Measurements of Nanosecond-scale Plasma Channel Evolution Excited by Beam-driven Plasma Wakes at FACET (E224)

E-303: Generation and Acceleration of Positrons at FACET-II

See presentation by Ken Marsh Wed. 1:30PM

. 1:30PM

High-Quality Positron Beams Will Be a Unique Feature of FACET-II – but not available until 2022

- Several candidate regimes for positron acceleration in plasmas but much of the physics remains unstudied experimentally
- Proposal to use two-bunch setup and thin converter target to shower positrons into accelerating phase of plasma wake
- Start-to-end simulations predict this is not a path to collider relevant positron beam parameters – off by order(s) of magnitude in intensity & quality

UCLA -SLAC

This technique should make for a good for PhD thesis but is not adequate for addressing roadmap goals

Development of High-Brightness Electron Sources e.g. Laser Triggered Injection in Electron-beam Driven PWFA

0.7 0.7 Divergence Energy spread 0.65 0.65 25 380±30 µrad Charge density (pC mm⁻¹ GeV¹) 2.1±0.3% r.m.s Charge density (pC mm⁻¹ GeV¹ 0.6 0.6 Estimated (O.55 0.5 0.5 0.45 20 (GeV) 0.55 0.5 0.45 emittance 1.5 mm mrad 15 10 0.4 0.4 0.35 0.35 0.3 0.3

у (µm)

A. Deng et al. *Nature Physics* August 2019

 Team of students and postdocs developed the techniques to align, synchronize injection and characterize the injected beams

- Measured beam parameters inline with expected values from simulations
- Experiments at FACET-II will optimize this technique (co-linear injection)

Success of E-210 has generated a family of follow-up proposals for FACET-II: E-31X: Trojan Horse-II, Plasma Torch, Dragon Tail, Plasma Afterglow, Icarus

Development of High-Brightness Electron Sources e.g. Laser Triggered Injection in Electron-beam Driven PWFA

Success of E-210 has generated a family of follow-up proposals for FACET-II: E-31X: Trojan Horse-II, Plasma Torch, Dragon Tail, Plasma Afterglow, Icarus

y (µm)

See presentation by Sebastien Corde Wednesday 2:00PM

E-305: Beam Filamentation & Bright Gamma-ray Bursts

POLYTECHNIQUE UCLA SLAC

Relativistic streaming instabilities are pervasive in astrophysics

Transverse beam stability:

- If $k_p \sigma_r \le 1$ the beam is focused towards a stable equilibrium: stable plasma-wave excitation.
- If $k_p \sigma_r > 1$ the beam undergoes transverse instabilities.

Charge
emittanceNormalized
spreadAngular
spreadBeam
sizeBunch
lengthPeak
current2 nC3 mm.mrad68.74 μrad2.23 μm1.5 μm150 kA

Plasma return current flows inside the relativistic e- beam. Two inter-penetrating e- flows.

Large variety of EM-modes can develop from noise Weibel (CFI), Oblique, Two-stream They break up the beam.

Which mode has the fastest growth rate? What is the amplitude of those modes? How do they affect the beam?

FACET-II beam allows exploration of high γ and wide range of n_b/n_p (10⁻⁴-1), which is ideal to explore growth and interplay between the two instabilities

E-305: Beam Filamentation Instabilities and y-ray Generation

Gamma rays in solids

Once filamentation instability has developed, beam electrons experience large electromagnetic fields, bending their trajectories, and leading to synchrotron-type gamma-ray emission.

POLYTECHNIQUE

UCLA -SLAC

Potential for giant gamma-ray bursts:

- Study of gamma-ray yield as a function of plasma density and n_b/n_p
- Wakefield versus filamentation regime
- Could exceed 10% conversion efficiency from electrons to gamma rays, with unique opportunities for gamma-ray source applications and for 2-step positron sources

Collaboration combines interests of several groups in astrophysical plasma instabilities, plasma focusing, novel positron production experiments

Critical intensity: ~10²⁹W/cm², can be achieved in the rest frame of ultrarelativistic electrons: $\chi = Y \sim \gamma E / E_{cr}$ (γ : Lorentz factor; E: electric field) M.J. Hogan, FACET-II Science Workshop, October 29, 2019

Quantum regime (x=Y≥1): stochastic photon emission & recoil disruption of trajectories; pair production no longer exponentially small

E-320: Probing Strong-field QED at FACET-II Collision of ~10²⁰ W/cm² laser pulses with 10-13 GeV electrons

See presentation by Sebastian Meuren Wednesday 9:30AM

Aim: measuring emitted gamma photons + scattered electrons and produced positrons

<u>Timeline:</u> Spring 2020: backgrounds (positrons) & first measurements (electrons), Summer/Fall 2020: pair production. Future: laser upgrade, gamma spectrum, etc.

<u>Collaboration:</u> Carleton (Canada); Aarhus (Denmark); École Polytechnique (France); MPIK & HI Jena (Germany); Lisboa (Portugal); Imperial & Belfast (UK); Cal Poly & Colorado & LLNL & Nebraska & SLAC & UCLA (USA)

M.J. Hogan, FACET-II Science Workshop, October 29, 2019

Radiation reaction (emission of multiple photons) Classical (Landau/Lifshitz): sharp edge (cooling) Quantum (QED): stochasticity (diffusive behavior)

Simulations: M. Tamburini (Heidelberg) & M. Vranic (Lisbon)

SLAC

FACET-II Technical Design Report SLAC-R-1072

FACET-II Layout and Beams

See presentation by Jerry Yocky Tuesday 11:00AM

-SLAC

Electron Beam Parameter	Baseline Design	Operational Ranges	Positron Beam Parameter	Baseline Design	Operational Ranges
Final Energy [GeV]	10	4.0-13.5	Final Energy [GeV]	10	4.0-13.5
Charge per pulse [nC]	2	0.7-5	Charge per pulse [nC]	1	0.7-2
Repetition Rate [Hz]	30	1-30	Repetition Rate [Hz]	5	1-5
Norm. Emittance γε _{x,y} at S19 [μm]	4.4, 3.2	3-6	Norm. Emittance γε _{x,y} at S19	10, 10	6-20
Spot Size at IP σ _{x,y} [μm]	18, 12	5-20	Spot Size at IP σ _{x,y} [μm]	16, 16	5-20
Min. Bunch Length σ _z (rms) [μm]	1.8	0.7-20	Min. Bunch Length σ _z (rms)	16	8
Max. Peak current Ipk [kA]	72	10-200	Max. Peak current Ipk [kA]	6	12

M.J. Hogan, FACET-II Science Workshop, October 29, 2019

Science Program is Centered Around the Seven Proposals That Received an "Excellent" Ranking from the FACET-II PAC

See presentation by Glen White Tuesday 10:00AM

SLAC

Three machine configurations have been identified and are being developed to satisfy all seven experiments:

- Two-bunch (1.3/0.6nC, 30/15kA , 150µm separation, 5-50cm betas)
 - PWFA emittance preservation under high beam-loading (E-300)
 - PWFA hosing suppression (E-302)
 - PWFA positron injection (E-303)
 - Wake imaging (E-324)
- Single bunch with high peak current (50-300kA, 0.1-10m betas)
 - Filamentation & gamma-ray bursts (E-305)
 - 'Trojan Horse' Injection (E-310)
 - Wake imaging (E-324)
- Highest Energy low backgrounds and well characterized (13GeV,
 - σ_z = 100 μ m, 1m betas)
 - HFQED (E-320)

Minimize configuration changes and gradually introduce new (more extreme) capabilities in the beams and hardware

Standard e- beam diagnostics (existing and new)

	Injector	L1 & BC11	BC14	L2 & L3	BC20 & IP	Total (Stage 1)
BPM	12	<mark>6</mark> + 3	4 + 2	66	19	112
Toroid	3	1	1		5	10
Wire scanner	1	1		<mark>4</mark> + 4	2	12
Profile monitor	5	2	2	1	8	18
TCAV	1 S		1 S		1 X	3
Bunch Length	1	1	1		1	4
Collimator		1	2	2	1	6

FACET-II re-uses existing FACET electron beam diagnostics where possible

Diagnostics are Joint Development Effort Between Users & Operations (EOS, Profile monitors...)

See presentations by Claudio & Doug Today, Mike Litos Wednesday

EOS tracking of 5,000 consecutive shots Variable bunch separation from 0-450µm

Profile monitors provide pointing and offset information w.r.t. each other and ionization laser

Spectrometer provides energy, energy spread, divergence...

FACET-II BC20 Enabled Beams Require Novel Diagnostics

FACET-II Will Achieve Experimental Efficiencies Through Collaboration Between Groups on Common Hardware

See presentation by Doug Storey Tuesday 1:50PM

-SLAC

Experiment	Needs	Gamma-ray spectrum	Radiated energy, # of photons	Typical divergence	Detectors under consideration	Comments
E200 PWFA	Angular and spectral, from 10 keV to MeV	Broadband from keV to MeV	1 mJ energy, 5×10 ¹⁰ photons	mrad	Gamma1, bent- crystal spectrometer, Gamma2/3, stack	
Filamentation	Angular and spectral, from MeV to 100 MeV	Broadband from MeV to 100 MeV	10 mJ energy or higher, 10 ¹⁰ photons or higher	mrad	Gamma1, pair spectrometer, Gamma2/3, stack	Address issue of damaging detectors if signal too intense
Trojan Horse II (and other high brightness injectors)	Angular and spectral, from keV to tens of keV	Betatron fundamental and harmonics in the keV to 100 keV range		50 urad	Bent-crystal spectrometer, Gamma1	Measurement below 20 keV requires a new design for exit window
SFQED	Spectral in 10-100 MeV and 1-10 GeV range, angular profile	Broadband from keV up to 8 GeV, peaked around 1 GeV	Joule energy, few 10 ¹⁰ photons	100-600 urad	Pair spectrometer (2-stage), Gamma1 with Csl, bent-crystal spectrometer	Need extremely quiet environment for GeV range, and/ or single-particle detectors for pair tracking.

	Plasma Picnic Basket Stuff					Dump Line Diagnostics												
	Li Oven	H2	Gas Jets 10 ¹⁸ -10 ²⁰ e-/cc	Single EOS	Quad EOS	Axilens/ Lens	DP	Butterfly	CHER 8-10+ GeV	WLAN 3-10+ GeV	500 MeV e-	G1	G2 >MeV	G3 <mev< th=""><th>1-30keV Bent Crystal</th><th>30-500keV Bent Crystal</th><th>0.5-30 MeV Compton (1st Gen)</th><th>0.001-10 GeV Compton + Pair</th></mev<>	1-30keV Bent Crystal	30-500keV Bent Crystal	0.5-30 MeV Compton (1st Gen)	0.001-10 GeV Compton + Pair
E300 – Two Bunch PWFA	Y	0	N	Y	N	Y	Y	Y	Y	Y	Ν	Y	HD	HD	0	HD	0	N
E302 – PWFA Wakefields	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Ν	Y	HD	HD	0	HD	0	N
E303 – Positrons																		
E305 – Filamentation	N	Ν	Y	Y	N	Y	Υ	Y	Y	Y	N	Υ	Y	Y	0	HD	Y	HD
E310 – TH-II	N	Υ	Y	Y	N	Y	Υ	Y	Y	Y	Y	Υ	0	0	RF		N	N
E320 – SFQED	N	Ν	0	Y	N	Y	N	Y	Y	Y	N	Υ	Y	Y	N		HD	RF
E324 – Imaging	Y	Υ	N	0	N	Y	Υ	Y	Y	Y	N	Υ	N	N	N	N	N	N
Yes	Requir	ed fo	r beam t	time														
No	Not us	eful																
RF	Requir	ed fo	r final ru	n														
Optional	Will pro	ovide	additior	nal useful	informa	tion												
HD	Not rec	quired	d for initi	al run but	highly o	desired												

Working Groups provide input to design diagnostics and experimental hardware that simultaneously benefit multiple experiments

FACET-II Experimental Laser Requirements Discussed in Collaboration and Topical Zoom Meetings e.g. Plasma Sources

SLAC

	Energy [mJ]	Pulse Length FWHM [fs]	Wavefront Control	Probe Laser
E300 Energy Doubling	30	70	Yes	Νο
E301 Hydrogen PWFA	500	70	Yes	Νο
E302 Transverse Wakefields in PWFA	30	70	Yes	Yes
E303 Positron Generation & Acceleration	30	70	Yes	Νο
E305 Filamentation & Gamma Bursts	150	70	Yes	Νο
E310 Trojan Horse II	30/500	70	Yes	Yes
E320 Strong Field QED	>600	35	Yes	Νο
E324 Plasma Imaging	N/A	35	Yes	Yes

See presentation by Brendan O'Shea Tuesday 2:10PM

FACET Experimental Ti-Sapph Laser Upgrades

Improved pointing stability

- Pointing diagnostics & feedbacks for experimental laser transport line
- Re-building problematic mounts
- Temperature control for transport system

Improved mode quality in IP area

✓ Deformable mirror(s)

Higher Intensity

- ✓ Laser system will be upgraded to achieve >15TW at 10Hz (e.g. 0.6J/35fs)
- 100TW class upgrade possible at 'moderate' cost with upgrades to the laser, transport, and delivery systems

Design and operations support provided by experienced LCLS Laser Science & Technology Division

Agenda & Session Topics

SLAC

Jesday	Wednesday Thurs	day Friday				
acility Sta ACET-II as o listen in v	atus, capabilities and up well as capabilities enabl via zoom meeting: https	pgrade plans: O ed by future upgr s://stanford	n the first day we will present and discuss what ades. .zoom.us/j/514840095	t we expect to be ava	iilable upon consti	ruction of
Start Time	Presentation			Presen	nter	Affiliation
09:00 am	Facility status (run sched	ule for 2020)		Vitaly Y	/akimenko	SLAC
09:30 am	Experimental science goa	ls, beam requirem	ents, detection/hardware needs	Mark H	ogan	SLAC
10:00 am	Beam configurations for	different experimer	nts	Glen W	hite	SLAC
10:30 am	Coffee Break					
11:00 am	Commissioning status &	beam parameters f	for 2020 Accelerator	Jerry Yo	ocky	SLAC
11:30 am	Machine learning experin	ients		Claudio) Emma	SLAC
12:00 pm	Linac Diagnostics			Nate Li	pkowitz	SLAC
12:30 pm	Lunch					
01:30 pm	Experimental area			Mark H	ogan	SLAC
01:50 pm	Dump table		Experimental	Area Doug S	torey	SLAC
02:10 pm	Laser status & possible fo	uture upgrades		Brenda	n O'Shea	SLAC
02:40 pm	Coffee Break					
03:10 pm	Future upgrades:					
03:10 pm	Higher Ipk (Laser heater,	S20 chicane, linea	arizer) Enhancement	S Glen W	hite	SLAC
03:40 pm	Positrons and Sailboat/U	FO		Glen W	hite	SLAC
04:00 pm	E-300: Two-bunch pump	depletion and emit	ttance preservation	Chan Jo	oshi	UCLA
05:00 pm	Discussion		Jump start			
05:30 pm	Adjourn		on tomorrow			
06:00 pm	Reception @ The Dutch	1 Goose				

M.J. Hogan, FACET-II Science Workshop, October 29, 2019

Agenda & Session Topics (Note later start Wednesday)

Tuesday	Wednesday	Thursday	Friday
		-	

Experimental installation readiness & run plans for 2019/2020: On the second day we would like experiments to present a description of an engineering solution for how the experiment will be installed, a plan for execution and a description of the observables. Presentations should conclude with a clear definition of success for the first phase of the experiment.

To listen in via zoom meeting: https://stanford.zoom.us/j/514840095

Start Time	Presentation	Presenter	Affiliation
09:30 am	E-320: Probing Strong-field QED at FACET-II	Sebastian Meuren	SLAC/Stanford
10:30 am	Coffee Break		
11:00 am	E-301: Tailored Plasma Sources for Emittance Preservation in PWFA and High-Brightness Plasma-Injected Beams	Mike Litos	CU Boulder
12:00 pm	E-324: Optical visualization of beam-driven plasma wakefield accelerators	Michael Downer	UT Austin
12:30 pm	Lunch		
01:30 pm	E-303: Generation and Acceleration of Positrons at FACET-II	Ken Marsh	UCLA
02:00 pm	E-305: Beam filamentation and bright gamma-ray bursts	Sebastien Corde	Ecole Polytechnique
03:00 pm	Coffee Break		
03:30 pm	E-310: Trojan Horse-II	Bernhard Hidding	University of Strathclyde
04:30 pm	Experimental Safety Review Status	Christine Clarke	SLAC
05:00 pm	Adjourn		

si ac

Agenda & Session Topics

Tuesday Wednesday Thursday

rsday Friday

Developing the science case for positrons and other upgrades: On the third day, the first goal is to clarify the science case for positrons. The second goal is to discuss ideas for new experiments and to understand the match to FACET-II capabilities. We hope through discussions to see an evolution of the experimental needs that improve chances for a positive review of potential proposals at the next Program Advisory Committee Meeting.

To listen in via zoom meeting: https://stanford.zoom.us/j/514840095

Start Time	Presentation	Presenter	Affiliation
09:00 am	Summary of FNAL Crystal Workshop & Opportunities @ FACET-II	Vladimir Shiltsev	FNAL
09:30 am	Roadmap towards linear colliders based on plasma accelerators	Mark Hogan	SLAC
09:45 am	New directions in positron acceleration research	Spencer Gessner	SLAC
10:30 am	Coffee Break		
11:00 am	Transversely tailored plasmas	Severin Diederichs	LBNL/DESY
11:30 am	Transversely tailored plasmas	Shiyu Zhou	UCLA
12:00 pm	Non-linear hollow channel plasmas	Spencer Gessner	SLAC
12:20 pm	Lunch		
01:20 pm	Attosecond science	Agostino Marinelli	SLAC
01:50 pm	Positron production and capture from a foil	Hiroki Fuji	UCLA
02:10 pm	Quasi-hollow channels + other IST ideas	Thales Silva	IST
02:50 pm	Coffee Break		
03:20 pm	Neutral beam filiamentation	Frederico Fiuza	SLAC
03:50 pm	Experimental progress in LWFA to PWFA staging	Sebastien Corde	Ecole Polytechnique
04:20 pm	Machine/physics studies towards FACET-III stability	Claudio Emma	SLAC
04:50 pm	Discussion towards new directions		
05:30 pm	Adjourn		

Agenda & Session Topics

SLAO

Friday Tuesday Wednesday Thursday

Assessment of plasma driven FELs: Plasma accelerators, both PWFA and LWFA, are being investigated as enabling technologies for 5th generation light sources. The large accelerating fields afford compact GeV beams and are predicted to produce beams with unprecedented brightness. On the fourth day we hope to discuss both the promise of this new technology as well as the practical challenges that must be addressed.

Plasma accelerators are already producing beams approaching the quality needed for FELs. This session will discuss the practical challenges of transitioning these beams to User experiments and FELs. We will seek to define common challenges that need to be addressed and what details need to be reported to allow members of the FEL community to judge ore progress.

To listen in via zoom meeting: https://stanford.zoom.us/j/514840095

Start Time	Presentation	Presenter	Affiliation
09:00 am	User needs - an LCLS perspective	Agostino Marinelli	SLAC
09:30 am	General introduction to challenges	Mark Hogan	SLAC
10:00 am	Progress towards seeded LWFA-based FEL and lessons learned	Sebastien Corde	Ecole Polytechnique
10:30 am	Coffee Break		
11:00 am	The LUX Facility	Andreas Maier	University of Hamburg/DESY
11:30 am	A Compact Laser-Plasma- Accelerator-Based FEL for Ultra-Fast Hyper-Spectral Experiments	Jeroen van Tilborg	LBNL
12:00 pm	Optimization of parameters for EuPRAXIA	Phu Anh Phi NGHIEM	CEA-IRFU
12:30 pm	Lunch		
01:30 pm	NeXource and the STFC PWFA-FEL program	Bernhard Hidding	University of Strathclyde
02:00 pm	UCLA DDR FEL Start to End Simulations progress	Xinlu Xu	SLAC
02:30 pm	Discussion of challenges: stability, pointing, matching	All	
03:00 pm	Adjourn		

SLAC

- FY20 experimental schedule will be developed based on readiness reported at this workshop, aligned with resources and project schedule
- Experimental safety reviews will continue to be coordinated by Christine
- IP area build out in parallel to the above through early next year
- We report the outcome of this workshop to DOE through a written summary report and presentation
 - We need your help and all slides posted so that we can help you
- Next year we expect another PAC following first beam time

Goals for this 4th workshop: communicate the facility status, review experimental readiness, develop the science case for positrons and assess the opportunities and challenges of plasma driven FELs.

All Work and No Play...

SLAC

In addition to the full science agenda, we have opportunities for further collaboration development

- Tuesday evening (tonight!)
 - @ The Dutch Goose
 - 3567 Alameda de Las Pulgas, Menlo Park, CA 94025

