

FACET-II Diagnostics Overview

FACET-II Science Workshop October 29 – November 1, 2019

Nate Lipkowitz Engineering Physicist Diagnostics & Controls

FACET-II Stage 1 Diagnostics Overview

- Goal: Deliver compressed electron beam from S10 to experiments in S20
- e- diagnostics support this beam delivery goal by measuring:
 - A. After injector: fully characterized beam (6D)
 - B. After each BC: longitudinal (E, z) distribution and charge
 - C. Into & out of Linac: transverse (x, y) emittance
- Retain the <u>existing</u> diagnostics in the FF \rightarrow IP \rightarrow Dump

FACET-II Diagnostics Stage 1 Diagnostics Overview

FACET-II Diagnostics Injector e- Diagnostics Overview

Provide to linac a beam of known:

- Charge
- Arrival time
- Bunch length & distribution
- Energy, energy spread & distribution
- Transverse emittance (projected and sliced)

S-band TCAV

- 1.4 MV crest deflection
- 2 MW from klystron 10-5

The most useful LCLS injector diagnostics are reproduced for the FACET-II injector

FACET-II Diagnostics Linac L1, BC11 and BC14 Overview

BC14

FACET-II Diagnostics Important Existing Sector 20 Devices

FACET-II Diagnostics ATCA Common Platform Controls

Where possible, adopted the LCLS/LCLS-II HPS common platform architecture (ATCA):

- Existing designs for BPM, BCM, BLEN (and LLRF)
- Shared components, bulk order discounts, etc
- Already integrates with MPS, timing, control system standards
- High performance (MHz beam)
- Growing pool of general and special purpose IO modules

https://slacspace.slac.stanford.edu/sites/lcls/lcls-2/sei/Review%20Presentation%20Background%20Documents/Accel/2017-04-002/Presentations/

FACET-II Diagnostics Beam Position Monitor Processors

CAMAC 605/972 SLC,1983 Hybrid mixer 3x self-triggering track-and-hold 10-bit gated ADC 50 µm precision ~800 pC min.

BC20 + IP

CAMAC NiTnH FFTB, 1991 Preamp/stretcher 2x self-triggering track-and-hold 16-bit latching ADC < 5 µm precision ~100 pC min.

FACET IP

VME XTA BPM LCLS/XTA, 2008 4x 140 MHz BP filter + 4x preamp ~100 MHz 12-bit digitizer < 5 µm precision ~10 pC min.

e- Injector

SLAC

ATCA BPM LCLS/FACET-II, 2018 4x 140 MHz BP filter + 4x preamp 370 MHz 16-bit ADC < 1 µm precision ~10 pC min.

BPMs are the primary diagnostic for monitoring, feedback and tuning

Stripline and Cold Button BPM Block Diagram & Interfaces

FACET-II Diagnostics ATCA Stripline BPM AMC

FACET-II Diagnostics Toroid Beam Charge Monitors

Resonant toroid current transformers with calibration winding

SLAC

CAMAC TCM module + SLAC preamplifier – used at FACET

- Rectifier to S&H circuit to 10-bit gated ADC
- ~ 5% absolute accuracy and precision at 3 nC

Toroids in FACET-II monitor total beam charge at boundaries of functional areas

Architecture – BCM Hardware

Architecture – Hardware BLEN GAP DIODE

Architecture – Hardware BLEN PYRO

FACET-II Diagnostics Profile Monitor Architecture

S10 AIP Profile Monitor, J. Mock FACET-II Science Workshop, October 29 - November 1, 2019

Industrial PC

• Advantech SKY-8200

- Small size 2U, 20" depth
- 8 PCIe x8 full size
- Diskless
- LinuxRT OS
- Intel Xeon processors (8 cores, 2GHz)
- Operating temperature range 0-50°C
- Up to 10 Gbps connection to controls network
- Camera server and interface to chassis

Cameras

Optics Box

Not my scope, but parts have been ordered Pigtail cable drawings nearly complete, fast turnaround in house to fab

Profile Monitor Chassis

FACET-II Diagnostics Linac Emittance Measurement

Location	Sector	Energy [GeV]	σ _x (μm)	σ _y (µm)	# of wire scanners	# existing
After BC11	Sector 11	0.335 – 1.0	145-215	110-215	4	4
End of L3	Sector 19	9.0 - 10.0	35-57	38-56	4	1

- Relocated wire scanners from Sectors 1 & 2 to FACET-II linac (S11 & 19)
- Replaced standard 10-foot RF structures with modified 9.4-foot sections

Wire scanners characterize emittance preservation across linac-BC system

Wire Scanner / Motion Architecture

FACET-II Diagnostics Wire scanner in Sector 12

FACET-II Diagnostics Overview Hybrid Control System Architecture

FACET-II Stage 1 Diagnostics Overview

Standard e- beam diagnostics (existing and new)

	Injector	L1 & BC11	BC14	L2 & L3	BC20 & IP	Total (Stage 1)
BPM	12	<mark>6</mark> + 3	<mark>5 +</mark> 2	66	19	112
Toroid	3	1	1		5	10
Wire scanner	1			<mark>4</mark> + 4	2	11
Profile monitor	4	2	1	1	3 + 8	21
TCAV	1 S		1 S		1 X	3
Bunch Length	1	1	1		1	4
Collimator		1	1	1	1	4

FACET-II re-uses existing FACET e- beam diagnostics where possible

Questions

