

Dump Table Introduction

Sector 20: IP area to the main beam dump:

Particle and gamma diagnostics:

- After the reimaging quads and spectrometer dipole
- 4 x 8 foot² optical table immediately before dump
- 60 to 70 mm nominal electron dispersion
- In-air diagnostics after the 5mm AI exit window

Overview of particle and gamma diagnostics

Electron diagnostics

- DTOTR1/2 high resolution invacuum e- profile monitor
- LFOV large field of view
- CHER electron spectrometer
- Gamma diagnostics
 - Gamma1 intensity and angular distribution
 - Gamma2/3 rough spectral measurement: 10keV to ~MeV
 - Baby Compton 200keV 20MeV
- Future planned diagnostics:
 - Full Compton spectrometer
 - SFQED-e

SLAC

0 CHER Gam Beam Gami Gamma2 Direction SFQED. Baby Compton

Dump table installation

Electron Diagnostics

DTOTR1: high resolution in-vacuum e- OTR profile monitor

In-vacuum electron diagnostics

- PCO Edge5.5 w. Nikon Nikkor 200mm f/4
- Polished Ti OTR target, 0.5mm thick
- FOV = 7 mm x 8.4 mm (±30mm)
- Imaging resolution: 4.5 µm, diffraction limited
- Energy resolution at nominal dispersion of $D_0 = 60$ mm, $\sigma_{res,E} \cong 0.01\%$

DTOTR2: large FOV e- detector

- AVT Manta w. Nikon Nikkor 50mm f/1.2
- Polished Ti OTR or 50 µm thick YAG:Ce
- FOV = 26 mm x 38.5 mm
- Resolution: ~50 µm, limited by pixel size

SLAC

D. Storey - Oct 29, 2019

Butterfly emittance measurement

Plasma Source Spectrometer Dipole Reimaging Triplet

- Butterfly measurement technique:
- Beam is reimaged from waist at plasma exit to DTOTR1, after the spectrometer dipole
- Horizontal beam width is fit to the function:

$$\sigma_{x}(\delta) \Big)^{2} = \frac{\epsilon_{n}}{\gamma_{b}} \left[M_{11}(\delta)^{2} \beta_{0} - 2M_{11}(\delta)M_{12}(\delta)\alpha_{0} + M_{12}(\delta)^{2} \left(\frac{1+\alpha_{0}^{2}}{\beta_{0}}\right) \right]$$

- Fit parameters ϵ_n , β_0 , and α_0 at the plasma exit
 - Resolution: Can extract ϵ_n to within ~5% (matched PWFA)
 - Chromatic effects and phase mismatch can introduce further uncertainty (next)

D. Storey - Oct 29, 2019

Dump Table Diagnostics

Effect of mismatch on PWFA emittance measurement

Witness beam tracked though plasma to DTOTR using Mike's non-PIC PWFA code to see the effect of phase mismatch

Findings:

- BF measurement will give an upper limit to emittance growth
- BF fit resolution is $\sigma(10\%)$ when the real emittance growth is < 10%
- Can perform a quad scan or attempt to correlate with betatron signal to improve measurement performance

Large Field of View profile monitor

LFOV (Previously WLAN): very large e- Field of View

- Hamamatsu Orca Flash V2 w. Nikon Nikkor 50mm f/1.2
- DRZ-Fine, 40 cm x 10 cm
- FOV = 30cm x 30cm
- Resolution: ~150µm pixel size

SFQED-e: Brighter, higher res.

- Same camera and lens
- Shorter working distance
- Scintillators: Shielded DRZ-High and/or CsI array
- Hole added to allow main beam to pass through

>-100

-150

-10

Energy [GeV]

5

x position [mm]

Dump Table Diagnostics

10

D. Storey - Oct 29, 2019

Cherenkov light spectrometer

CHER: e- spectrometer

- PCO Edge5.5 w. Nikon Nikkor • 600mm f/4 (new lens)
- Cherenkov light from 5cm gap ٠
- $FOV = 5 \times 16 \text{ cm}$ •
- Imaging resolution: ~230 µm •
 - Energy resolution at nominal dispersion of $D_0 = 62 \text{ mm}$

$$\sigma_{res,E} = \frac{\sigma_{res,y}}{D_0} E_0 = 0.4\%$$

e- beam profiles on CHER_FAR - E200 y (mm) 15 ×1.00

SLAC

Transvers

Dump Table Diagnostics

Gamma Diagnostics

Gamma diagnostics

Gamma1: Photon profile monitor

- Hamamatsu Orca Flash V3
 w. Nikon Nikkor 50mm f/1.2
- DRZ-Fine or Csl array
- FOV = 10cm x 10cm
- Resolution: ~50 µm pixel size (~2 µrad)

Gamma2/3: Photon spectrometer

- Manta G125B w. 13-130 Computar Lens
- DRZ-Fine with preceding Ross/Step filter
- Resolution: ~50 µm pixel size

Gamma1 overview

Gamma1 will act as a photon profile monitor:

- 2 different scintillators set-ups
 - Pixelated Csl Array 0.5x0.5x3 mm
 - DRZ-screens (+ converter if needed)

Gamma1 information:

- Photon integrated signal:
 - PWFA: Correlated with beam matching dynamics.
 - Spatio-temporal alignment.
- Photon angular distribution:
 - PWFA: e⁻ beam *x-y* symmetry and trailing beam offsets.
 - E320 SFQED: a_0 value.

Slide courtesy of P. San Miguel Claveria, LOA/SLAC Dump Table Diagnostics

Slide courtesy of P. San Miguel Claveria, LOA/SLAC Dump Table Diagnostics

Gamma2

Gamma3

Sketch of filters for E300 30µm emittance beams, together with betatron angular distribution.

Gamma2 and 3 overview

Gamma2 and 3 measure photon spectral information by measuring conversion (Gamma2) and transmission (Gamma3) rates of gammas through a set of filters.

Gamma2,3 information:

- Photon spectral information:
 - PWFA: ω_c measurements, correlated with beam matching dynamics.
 - E305 Filamentation: instability growth.
- Filter set-up:
 - Step filters: conversion (100's keV-10's MeV) and transmission (50-100's keV)
 - Ross filters: energy bands (<100 keV)

Note: Geometry and choice of filters depend on gamma ray features.

S BETA1 / S BETAL

Compton Spectrometer (UCLA)

- Optional positron readout to subtract pair background from Compton spectrum.
- Sextupole design allows compact spectrometer with high dynamic range.
 Lengths scale with cube root of electron momenta.

Slide courtesy of B. Naranjo, UCLA

Status of dump table diagnostics installation

-SLAC

Diagnostic	e-/ γ	Current Status	Work remaining	Complete
DTOTR	e-	All components fabricatedResolution and alignment tests complete	Chamber ships todayOTR to be polishedInstallation	80%
LFOV	e-	 Course install on table 	 Final alignment 	95%
CHER	e-	Course install on table	Install wafers and filterFinal alignment	90%
Gamma1	γ	 Course install on table 	 Final alignment 	95%
Gamma2/3	γ	Course install on table	Camembert fabrication	80%
Baby Compton	γ	 Design stage 	Review, fabricationInstallation	
Other remaining work: New framegrabbers for 2 camera servers, 1 new sCMOS camera chann New optical fibers in tunnel Motor and camera commissioning in tunnel 			el	
Dump table diagnostics expected to be completed and ready to see beam by Dec. 2019				
D. Storey – Oct 29, 2019		Dump Table Diagnostics		16

Summary

- Dump table diagnostics installation >80% complete.
- Expected to be ready to see beam by Dec. 2019.
- Thanks to all collaborators for helping to make this all come together!

SLAC

Thanks for your attention!

Questions?

