

FACET-II Emittance Measurements

PWFA Research Priorities at FACET-II

Emittance Preservation with Efficient Acceleration FY19-21

High-gradient high-efficiency (instantaneous) acceleration
 has been demonstrated @ FACET

 Full pump depletion and preservation of emittance at µm level is planned as the first high impact experiment

Positron Acceleration FY21-24

- Only positron capability in the world for PWFA research will be enabled by Phase II
 - Develop techniques for positron acceleration in PWFA stages

High Brightness Beam Generation & Characterization FY20-22

- 10's nm emittance preservation is necessary for collider applications
- Ultra-high brightness plasma injectors may lead to first applications of PWFA technology

Staging Studies FY22-25

- Independent witness injector planned to be added to FACET-II as an AIP project
- Enables studies of staging challenges (timing, alignment,...) and high transformer ratio

5 m long diagnostics system

Two 10' SLC S-band structures

C. Clarke, FACET-II SCIENCE WORKSHOP, Oct. 17, 2017

FACET Experiments use different Plasmas: Laser or Beam Field Ionization, "Heat pipe oven" or Gas

Heat Pipe Oven: Li/He or Rb/Ar Vapor/buffer gas (at same pressure):

n₀ = 10¹⁴-10¹⁷ e⁻/cm³, L = 20-200 cm

Enabled Many Advances in PWFA Physics:

 Trojan-horse Injection – in preparation 	(1E17, 3.2 Torr H/He mix)
 High-field Acceleration – Nature Communications 2016 	(1E18 Ar, 32 Torr)
 Ionization Injection – PRL 2014 	(2.7E17 Rb, 16 Torr)
 Wakefield Mapping – Nature Communications 2016 	(2.5E17, 32.5 Torr)
 Hollow Channel e⁺ PWFA – <i>Nature Communications 2016</i> 	(8E16, 9.6 Torr)
 Multi-GeV e+ PWFA – <i>Nature 2015</i> 	(8E16, 9.6 Torr)
 High efficiency acceleration – Nature 2014 	(5E16, 5.8 Torr)
 42 GeV E-gain in one meter – Nature 2007 	(2.7E17, 35 Torr)

Hydrogen, Argon or Mixed Gas Cells:

• $n_0 = 10^{16} - 10^{18} \text{ e}/\text{cm}^3$, L = 10-100 cm

2016 FACET-II Workshop:

10 GeV driver Pump depletion Emittance preservation **4E16, 4.6 Torr**

Goals of Differential Pumping System

- No windows in beam path at FACET-II:
 - damage by beam
 - spoiled emittance
- Design requirements:
 - 5 Torr He pressure for experiments
 - 10⁻⁸ Torr before xTCAV
 - Compatible with laser ionization
 - Requirements for downstream of experiment not yet defined

Leaky window due to beam burn-through

Theory of Differential Pumping

Viscous flow: mean free path is similar to or smaller than size of object

- number of molecules that pass through a hole is proportional to the pressure of the gas and inversely proportional to its molecular mass
- 760 Torr ~10 Torr

Transition flow: a mix between the two

- Empirically derived formulae or MC simulation
- 10 Torr ~ 10⁻³ Torr

Free molecular flow: mean free path of the

molecules is larger than the size of the chamber/object under test

- For objects of the size of several cm, this means
- pressures well below 10⁻³ Torr
- Good vacuum regime

Pump speed: S = C(P0/P1 - 1)

Pinhole $C = 2.7 \left(\frac{T}{M}\right)^{\frac{1}{2}} D^2$

Temperature T = 293 Molecular Mass of Hydrogen M = 2

Capillary $C = 3.81 \left(\frac{T}{M}\right)^{\frac{1}{2}} \left(\frac{D^3}{L}\right)$

FACET-II will operate in transition and free molecular flow regimes

Beam Stay Clear

C. Clarke, FACET-II SCIENCE WORKSHOP, Oct. 17, 2017

Real time calculations

C. Clarke, FACET-II SCIENCE WORKSHOP, Oct. 17, 2017

Next Steps

• We need to work with vendors on pump choices etc.

E.g. Laybold Simulations from Navid Vafaei-Najafabadi

Conclusion

 FACET-II needs a differential pumping system to avoid using windows in the beamline

- Early implementation will focus on first experiments with Li Oven
- Differential pumping system likely will be suitable for multiple experiments at end of development
- Differential pumping will introduce small apertures into IP Area upstream of experiments
- FACET-II needs to work with vendors to take the concept further