

FACET-II Design, Parameters and Capabilities

2017 FACET-II Science Workshop, October 17-20, 2017

Glen White

Overview

Machine design overview

- Electron systems
 - Injector, Linac & Bunch compressors, Sector 20
- Positron systems
 - Source, return lines, damping ring, Linac injection

Operation modes

- Single-bunch, multi-bunch, e-, e+, e- & e+, collimated
- Independent witness bunch injector

Achievable beam parameters

- KPP's
- Transverse emittance, peak current and charge range and tradeoffs
- Extreme I_{pk} and other exotic options

Design capabilities discussed here -> see later talk for stability analysis

Machine Design

FACET-II Electron Systems (Stage-I)

- Injector
- Bunch compressors in Sector 11 (BC11) and Sector 14 (BC14)
- Beam diagnostics
- Sector 20 initially untouched, ideas for improvements later

Electron Injector

- RF Gun, E₀=90-120MV/m
- L0 accelerates to 135 MeV
- LH chicane off project, space reserved
- 35⁰ bend into main linac L1 @ Sector 11
- Q < 5 nC, <300 A peak current
- Design: γε_x = 3 μm-rad @ 2 nC, 240 A
- Emittance compensation design using IMPACT-T
- Beam distribution from IMPACT-T simulation used to assess FACET-II performance in tracking model

Design of the Injector Complex up to BC11 based on LCLS Sector 20 injector

Electron Injector Optimization & Simulation

-SLAC

	Cumh			Tracking Simulation Results					
Parameter	ol	Unit	Req.	Orion	Orion	LCLS	LCLS]	
					+ LH		+ LH	·	
Peak current at injector exit	I _{pk}	kA	-	0.24	0.24	0.36	0.33		
Peak current at Sector 20 IP	I _{pk}	kA	>10	70	36	95	56		
Bunch length after injector (rms)	σ _z	μm	-	838	839	617	618	æ	
Bunch length at Sector 20 IP (core rms)	σz	μm	<20	1.8	4.3	1.5	2.8	30	
Transverse emittance after injector (90%)	$\gamma\epsilon_{x,y}$	μm- rad	-	2.9	2.9	3.0	3.0	•	
Transverse emittance into Sector 19 (90%)	γε _{x,y}	μm- rad	<20	3.9	3.3	4.0	3.5		
Tranverse beam size at Sector 20 IP (core rms)	σ_x, σ_y	μm	<20	17.7, 12.2	16.1, 11.9	17.5, 9.8	16.5, 9.9	•	

LH = "laser heater"

All options meet KPP requirements Increased longitudinal brightness possible with LCLS gun

- ε-compensation optimization& tracking with IMPACT-T &Lucretia
- Optimize:
 - Gun Sol
 - Gun RF phase
 - Cathode-L0a drift
 - 2nd solenoid

- Sector 20 operations 4.0-13.5 GeV possible (10 GeV design)
- Feedback and TCAV diagnostics stations included in design
- Beyond-baseline parameters shown may include x-band 4th harmonic linearizing structure (L1X) to improve linearity of chirp

FACET-II Positron Systems (Stage-II)

- Existing target in S19 & return lines, truncated in S10
- New return-line booster for 200->335 MeV in S14
- New horizontal & vertical return-line doglegs for DR injection
- DR & DR extraction and pre-compression in S10

Positron Damping Ring in Sector 10

- 2.9 m diameter ring
- Vertical injection & extraction
- SLC septa, kickers & RF
- New combined-function arc magnet designs

Positron Damping Ring Design Overview

Parameter Value Energy, E [MeV] 335.0 6 Bunch Charge, Q [nC] 1.0 $\beta_{\mathbf{x}}$ Beam Current, I [mA] 14.0 β_v 5 Circumference, C [m] 21.41 -0.05 $\eta_{\mathbf{x}}$ Arc Bend Radius, p [m-1] 0.78 -0.1 <u>E</u> RF Energy Acceptance, A [%] 2.9-4.1 4 -0.15 -0.2 Disbersion 4.588, 2.570 β^{x,y} [] Tune, v_a, v_b Emittance, $\gamma \epsilon_{a,b}$ [µm-rad] 5.5-5.8 Bunch length, σ_{z} [mm] 3.0-3.9 Energy spread, σ_{δ} [%] 0.048-0.062 2 Mom. compaction, $\alpha_{\rm p}$ 0.0525 2.15, 1.0, 0.85 Damping partition, J_x , J_y , J_z -0.3 Damping time, τ_a , τ_b , τ_c [ms] 16.9, 36.4, 43.0 1 -0.35 Natural Chromaticity, ξ_{a0} , ξ_{b0} -6.5, -4.4 Chromaticity, ξ_{a}, ξ_{h} +1, +1-0.4 0 Syn. Energy loss / turn, U₀ 15 20 0 5 10 1.362 [keV] S [m] RF voltage, V_{BF} [MV] 1.1-2.2 RF frequency, f_{BF} [MHz] 714.0 1 nC @ 5 Hz 51 Harmonic Number [n] 0.037 (521.9 $\sigma_{z} = 3.9 \text{ mm}, \sigma_{\delta} = 0.062 \%$ Synchrotron Tune kHZ, 26.8 turns)

• $\gamma \epsilon_t = 5.5 \mu m$ -rad (fully coupled, defined by IBS)

DR designed, incuding collective effects

Positron Transport Lines: *Ring to Linac*

Positron Extraction and Compression – Sector 10-11 335 MeV Vertical Diagnostic waist e+ from PDR → Diagnostic waist e+ Bunch compressor Monitor e+ from PDR → Compressor Comp

New Beamline Designed to Extract Positrons from DR, Diagnose & Condition for Linac

PARAMETERS & CAPABILITIES

Single Bunch [Baseline]

• e⁻ | e⁺ (parameters of single bunch tracked to IP)

Collimated Single Bunch [Baseline]

• $e^{-} | e^{+}$ (as above, using collimator jaws to optimize $I_{pk} / Q / \epsilon$)

SLAC

Notched Beam [Baseline]

e⁻ | e⁺ (FACET-like operations)

Shaped Injector Pulse [Upgrade]

e⁻ (controlled, shaped laser pulse from e⁻ injector laser)

2 Bunch [Upgrade]

e⁻ + e⁺ ("Stage III" option – simultaneous delivery @ IP)

Max I_{pk} [Upgrade]

e⁻ (Re-imagined BC20 and FFS layout for max compression)

FACET-II Key Performance Parameters

Description of Scope	Units	Threshold KPP	<i>Objective</i> <i>KPP</i>
Beam Energy	[GeV]	9	10
Bunch Charge (e-/e+)	[nC]	0.1/0.1	2/1
Normalized Emittance in S19 (e-/e+)	[µm-rad]	50/50	20/20
Bunch Length (e-/e+)	[µm]	100/100	20/20

Threshold KPPs

 Minimum parameters against which the project's performance is measured when complete

Objective KPPs

Desired operating parameters which may be achieved during steady operation

Baseline design allows for objective key performance parameters specified by science program

SLAO

Baseline FACET-II Electron Single-Bunch Design Parameters

Compression scheme : verified with tracking simulations

Baseline FACET-II Positron Parameters

Compression scheme designed to satisfy objective KPP, verified with tracking simulations

6D start-end particle tracking using IMPACT-T and Lucretia

- **IMPACT-T** used for injector tracking, including 3-D space charge
 - Tool used for LCLS/LCLS-II
- Lucretia: Matlab-based toolbox for electron beam design and beam dynamics modeling of single-pass beamlines
 - Benchmarked against other tracking engines in context of Linear Collider design and FACET
 - Elegant, PLACET, MADX/PTC, Liar, BMAD, LiTrack
 - Tracking includes effects of ISR, CSR, longitudinal and transverse wakes in structures, longitudinal space charge
 - Treatment of error sources
 - Magnetic fields, element offsets, RF errors

Design and simulation of FACET-II using well tested simulation tools

Example FACET-II Longitudinal Compression Profile

Start-End Tracking Longitudinal Phase Space at IP

Design core bunch length <20um for both electrons and positrons achieved

Start-End Tracking Transverse Dimensions at IP

Meets typical E200 requirements for $\sigma_{x,y}$ < 20 µm

Manipulation of Electron Bunch @ IP Using Linac Phasing

SLAC

- Spread out longitudinal profile with current peaks at head & tail
- Somewhat suitable configuration for "2-bunch notch profiles" for plasma experiments
- Difficult to fine-tune drive/witness bunch parameters
 - Need additional parameters: manipulation of injector profiles...

Shaped Injector Pulse to Deliver 2-Bunch Notched Beam in S20

Property	Drive Bunch	Witness Bunch
Q / nC	1.6	0.5
δ _E / Ε (%	0.08	0.08
uncorrel.)		
Shape	Top-hat, ramp	Top-hat, ramp
Ramp Time / μs	10	10
L/mm	1.0	0.375
<ez> r_{correl}</ez>	-0.45	0.4
dz / mm	1.	62

Parameter @ IP	No	COLL	S20 Notch COLL			
	Drive	Witness	Drive	Witness		
Q / nC	1.6	0.5	1.5	0.5		
$\delta_{\rm E}$ / E (% rms)	0.24	0.24	0.16	0.25		
I _{pk} / kA	32	16	34	16		
γε _y / μm-rad	3.4	3.2	3.3	3.2		
γε _x / μm-rad	6.4	7.8	5.6	7.8		
γε _x / μm-rad (90%)	5.7	6.1	5.1	6.1		

SLAC

Example Compression with Collimation (2nC e+ source, e- xband linearizer & LH) 2-bunch

Tracked longitudinal phase space from BC11, simultaneously for electrons and positrons

Configuration Options with Collimation - Electrons

- Electron compression configuration tailored for high peak current
- Compression settings:
 - BC11, BC14, BC20 collimators
 - L1S phase
 - L1X amplitude
 - BC20 R₅₆
- Requires x-band linearizer
- Trade-offs
 - Final charge
 - Final transverse emittance
 - Stability of delivered beam

Configuration Options with Collimation - Positrons

- Positron compression configuration tailored for high peak current
- Compression settings:
 - BC10, BC14, BC20 collimators
 - L0P amplitude
 - BC20 R₅₆
- Trade-offs
 - Final charge
 - Final transverse emittance
 - Stability of delivered beam

Current BC20E ("W-chicane")

- Many magnets, large beta functions : difficult beam alignment with large energy spread
- Experience difficulties with alignment and aberrations / optics control

BC20E is known from simulations to be limiting factor for max peak current performance due to CSR

• Re-design BC20E with fewer bend magnets and fewer quads

For future simultaneous e-, e+ ops: need positron arm (BC20P)

• Make use of magnets recovered from W-chicane

BC20 Requirements

- Deliver KPP electron and positron beams
- Simultaneous solution for e- and e+ (e+ arm with 5.25 cm path length difference)
- R₅₆ adjustable in range 0-5 mm
- Relative e-, e+ spacing adjustability
- Small β in chicanes (FACET experience)
- Minimized chromaticity, 2nd order dispersion at IP
- Maximize peak current throughput (minimize CSR emittance growth)

Sector 20 system provides: final bunch compression, transverse focusing at experimental IP, Inversion of e+ / e- time ordering

BC20E Re-Design

- Reduced magnet count
- Few bends, simpler design -> less CSR emittance degradation

SLAC

• Shorter by 3.5 m : allows to move TCAV after B1

New BC20 Layout (Stage-III)

SLAC

BC20P similar to previous design, shortened in z, re-matched to maintain correct path difference

New BC20E/P Optics (R₅₆ = 5mm)

SLAC

Optics design meeting BC20 requirements

Improved Electron Beam Quality with New BC20E

Original "W-chicane":

• I_{pk} (max) = 70 kA, $\gamma \epsilon$ = 13 μ m-rad **Re-designed BC20E:**

SLAC

• I_{pk} (max) = 176 kA, $\gamma \epsilon = 7 \mu m$ -rad

Particle tracking demonstrates improved longitudinal and transverse beam quality @ S20 IP with increased peak current capability

Further Performance Improvements - Upgraded FFS

- Injector laser heater + L1X
 - δ_E 50 300 keV rms
- Collimation (2 -> 1.2 nC) in BC11 & BC14
- Simplified FFS, $\beta^* > 5$ cm
- Spoilers to symmetrize transverse profile @ IP
- σ_x = 4 10 μm
- γε_x = 7 22 μm-rad
- $I_{pk} = 70 300 \text{ kA}$

Beam Tracking with Upgraded FFS

-SLAC

Beam Quality

- Small correlations still present in beam even with spoiler option
- x-z correlations due to CSR
 - Improvement requires "zig-zag" chicane design with active CSR compensation

Tracked Macro Particle Distribution in x-z plane

Path-Length Adjustability

Coarse and fine adjustment controls:

Δz 0 - 500 μm

- Infrequently used- re-tuning required after adjustment
- B3 Δθ = 18.6 mrad (for 500 μm)
- Move Q5, S3E/L to orbit (54 mm)
- Correct angle with Q5 Δx =-21 mm

Δz +/- 100 μm

- Continuously adjustable with minimal impact on other delivered beam parameters
- 2 X 4-bend chicanes
- θ = 6.45 mrad (0 9.14) = +/- 100 μm

SLAO

Path length adjustability within BC20P meets requirements

Independent Electron Witness Bunch Injector @ S20

SLAC

05

Source Parameters

Parameter	Symbol	Value
Initial Bunch Charge	Q _i	350 pC
Normalized	γε _x / γε _v	1 / 1 um.rad
Transverse emittance		
FWHM Bunch Length	∆t _b	1.0 ps
Peak Bunch Current	l _{pk}	300 A

Injector Par	ameters	6
Parameter	Symbol	Value
Drive Beam Energy	E _d	10.0 GeV
Witness Bunch Final Energy	Ew	100 MeV
rms Transverse Final Spot Size	σ_x / σ_v	< 10 / 10 um
rms Longitudinal Final Bunch Length	σz	< 10 um
Final Bunch Charge	Q _f	100 pC
Final Peak Current	I _{pk}	3,000 A
Final Beta Functions	β _x / β _y	5 x 5 mm
System Length	S	18 m
Injection Bend Angle	Φ	25.78 degrees

Simulated Witness Injector Bunch

-SLAC

-30 -20 -10 0

z(um)

Parameter Summary

 Summary of high peak current for various configuration options summarized below

SLAC

Configuration	ľ _{pk} l	[kA]	σ_z^*	[µm]	σ_x^*	[µm]	γε [*] _x [μ	m-rad]	Q [nC]	
	e-	e+	e-	e+	e-	e+	е-	e+	е-	e+	
Baseline (single or 2- bunch)	70	6	2	17	18	16	13	10	2	1	1
2-bunch (2nC posi+LH+L1X+COLL)	130	12	1.8	8	11	10	20	20	1.7	0.7	
Notched (Drive, Witness) +LH	32,16		5		10, 10		6, 8		1.5, 0.5		► 10 GeV
BC20 Upgrade	176		0.8		6		7		2		
BC20+FFS Upgrade +L1X+COLL	300		0.4		8		22		1.2		J
Witness Bunch Injector	3		5		7		1.9		0.1		100 MeV

*LH = needs laser heater in injector, L1X = needs x-band harmonic cavity in L1, COLL = utilizes collimation in BC11 & BC14

Backup Slides

BC20E Compression Performance – 2D CSR

SLAC

- Transverse component of CSR wake important for FACET-II @ high Ipk
- Newly added feature in Lucretia to perform 2D CSR calculation: only included for Upgraded parameters
 - Fractional impact on results smaller for high-compression cases