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Trojan Horse plasma photocathode

O Prospect for nm rad emittance; brightness
many orders of magnitude beyond even state-
of-the-art X-FEL linacs

driver

e-beam

can be estimated to be €, = o,g.0, /(mc)=

| He elogiTon 1v ! 165 ISR : wodao/23/* = 2.6 X 10~% mrad. This is one of the critical
Hlddlng et al., Phys. Rev. Letters 108, 035001 (2012) advantages of the acceleration scheme, which opens up
the possibility of its use in future advanced free electron
laser (FEL)-based x-ray light sources, where emittance has
a limiting effect on performance and reachable wave-
length. For example, an approximation for the minimum
wavelength based on the above emittance and an energy
similar as in the Linac Coherent Light Source (LCLS)

results in Ay, = 47€,/vics = 0.1 A, about 1 order of
magnitude better than the current LCLS performance [27].
We have also performed GENESIS simulations of the case in
which the beam presented here i1s accelerated up to
4.3 GeV, and used with a next generation undulator [28];

d Brightness transformer: Increase this scenario promises a 1.5 A SASE FEL that saturates in
by factor up to 100000x ~20 m, a dramatically shorter distance than the LCLS.
21
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E-210: Trojan Horse at FACET
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Concept of plasma photocathode-released “escort beam” for chirp control

Tailored beam loading via escort bunch allows chirp control:

\/Sim

ny, =npx0. np =npx0.5 np =Npx1.5
1l @ e — driver ny (b) e — driver ny (d) e — driver ny
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£ sl & o
£ 05 ol €
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Nat. Comm. 8, 15705 (2017)

G.G. Manahan, F. Habib et al.,
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E-310: Trojan Horse-ll

In combination with ‘

E-311: Plasma Torch

E-312: Dragon Talil

E-313: Multibunch Dechirper
E-314: lon Collapse

E-315: Plasma Afterglow

projected B, ¢, (A/m?rad? 0.1%bw)
3 3 3 3 3 3 3
B (6} (o)} ~ o] [(e} o

E-316: Icarus
0.5 1 2 4 8 16 32
Electron energy (GeV) '
‘ multi-kA current
. z
Q Ultralow emittance beams for HEP 6D — 5
{_6?1 O].%UW energy
: : e . .~ spread
O Ultrabright beams for photon science nmrad emittance <(§)_ 01%

(UK-US STFC “PWFA-FEL® project)
Manahan &Habib et al., Nat. Comm. 8, 15705 (2017)
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Spatiotemporal injection accuracy

U Recipes: a) measure & minimize absolute jitter of incoming pulses; b) increase blowout
size (Deng, Karger et al., Nat. Phys. 2019, supplemental discussion)

Small blowout, large jitter: Large blowout, small jitter:
Poor injection precision Excellent injection precision (sub-%), and tunability?

80 1

40 A

y (um)
o

Figure of merit y:
laser precision/(A,)
33% at FACET

—40 1

_80.

0 60 120 180 240 300
& (um)

O Bonus: operation at lower plasma densities reduces residual energy spread
(Manahan & Habib et al., Nat. Comm. 8, 15705, 2017), and reduces requirements
on driver beam (can in turn realize kickback by further increasing stability?)

15



How precise does the spatiotemporal injection need to be?

O Once absolute spatiotemporal injection precision is known:

QO Injection precision is dependent on size of the plasma wave, and absolute jitter
of incoming laser and delectron beam = work at lower plasma densities

O E.g. 500 ym plasma wavelength, with 30 fs r.m.s. timing jitter (LCLS aims at
<10 fs) and similar pointing accuracy, an injection precision of ~1% can be
achieved




Follow up: What does this mean for obtainable beam quality and stability (5D)?

O Sensitivity analysis done for 250 ym plasma wavelength: vary temporal
desync. from 0-30 fs, misalignment from 0-10 ym, laser intensity a, 0-2%

. . 21
Resulting 5D brightness: B, = —L
€n,x En,y
Bsp: (7.11 +3.66)x 108 A/m2/rad? Bsp: (10.45 +1.65)x 108 A/m?/rad? Bsp: (13.50 +2.40)x 108 A/m?/rad?
S 17.5F | ®
£ o
NE 15-0 B B °
<\t °
© 12 5 _O _0 i [ J
S J °
~ 10.0} ¢ - * & -
o ¢ °
S 75¢f .
L
o
@ 5.0F . . i
o °
1 1 1 1 L, 1 1 1 1 1 L 1 1 1
0.0 2.5 5.0 7.5 10,0 O 10 20 30 -2 -1 0 1 2
Misalignment AY (um) Timing Jitter At (fs) Normalized amplitude jitter Aag (%)

Note: X-FEL 5D brightness is at 1e12 level



O Timing varied up to 30 fs in ~250 ym blowout (y = 4%): excellent output beam stability!

W (MeV)
N ()}
()] o

10

AWIW (%)
)

Energy Stability: (72.38+£0.69) MeV
Emittance Y Stability: (15.11+0.13) nm rad
Emittance Z Stability: (15.51+£0.12) nm rad
Bunch Length Stability: (0.22+0.04) yum

Charge Stability: (2.375 +0.006) pC
Rel. Energy Spread Stability: (1.5240.11) %

5D Brightness Stability: (10.45+1.65)x10"° A nm > rad -
Peak Current Stability: (1.23£0.21) kA

— Referance case: Atj; =0 fs

—— Timimg jitter: Aty =5fs

- —— Timimg jitter: Afy; =10 fs

—— Timimg jitter: Ay, =15 fs

—— Timimg jitter: At,,;=20 fs

—— Timimg jitter: At =25 fsTimimg jitter: Af;; =30 fs

P




€,y (Nm rad)

&,, (nmrad)

Transverse plasma photocathode release laser offset jitter study in 250 ym length blowout

Charge Stability: (2.371 £0.005) pC
Rel. Energy Spread Stability: (1.41+0.05) %

Energy Stability: (72.15+0.59) MeV
Emittance Y Stability: (29.91+11.8) nm rad

Emittance Z Stability: (15.38+0.48) nm rad 5D Brightness Stability: (7.11+3.66)x10'° A nm > rad -
Bunch Length Stability: (0.19£0.03) ym Peak Current Stability: (1.32+0.21) kA
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3.7
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What does this mean for obtainable beam quality and stability (6D)?

6D Brightness (x10'° A/m?/rad?/0.1%bw)
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WP 2: Preliminary witness beam extraction

O Tailored plasma density at the exit

Q “escort”bunch dechirping

O Emittance is preserved at the exit
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Emittance preservation during extraction
O Decreasing plasma density at the exit

O With “escort”-bunch dechirping

O Emittance is preserved!
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WP 2: Preliminary witness beam extraction

Norm. Emittance (nm rad)

£9¢] Plasma extraction ramps —

— Loz =7 mm
—— Leos? =8 mm
—— Lo =9mm
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O Tailored plasma density at the exit

O “escort”bunch dechirping works with extraction ramp

O Emittance is preserved at the exit

Habib / University of Strathclyde & SCAPA
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WP 2: Preliminary transport line design

Double triple beam transport line

\0\'
%o ¢

transport

ultrahigh brightness
electron beam output

(PMQs) 700 T/m
O Plasma lenses?

O 10 cm distance until 1st PMQ
0 6D-bright witness. 9 pC, duration 0.34 ym

O Second triplet: electromagnet quadrupoles
0 Elegant: CSR not problem.

First triplet: permanent magnet quadrupoles

ELEGANT simulation &nx €y ]

a

05 1.0 15 2.0 25
distance [m]

6D phase space from the
PIC-simulation is considered

Witness beam is captured i
and matched

No witness beam emittance «. . & « «

growth->6D brightness is
preserved



WP2: Escort and witness beam separation

L Beam energy of the escort bunch is significantly lower than witness beam energy
O Use dispersion elements such as dipoles to separate escort and withess bunch
O For example: A chicane/ by-pass line with energy collimator after the second dipole

O Simulations indicate that the escort bunch diffracts quickly after the plasma stage

Energy collimator

Collimator -
/

o -4 " VA

PMQ-triplet




WP2: Escort and witness beam separation
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“PWFA-FEL” project: Strathclyde-STFC-SLAC-UCLA 2019-2023
O Explore capability of Trojan Horse-generated ultrahigh brightness beams for X-FEL

OQ FEL Emittance criterion: €n < A (v) /4T v’

= 10's nmrad emittance allows to push towards harder X-ray wavelengths A, for electron energies y

O FEL Energy spread criterion: (o~ /7) < p ¢/

= breakthrough: electron energy spread (e.g. <0.01% suffices X-FEL Pierce parameter p)

Au
O FEL gainlength: Ly1p = ————
g g g,1D 477\/§p1D

= Brightness B boosts gain and allows saturation of photon field in 10 m vs. 100‘s metres

10101
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WP 3: XFEL Beam-by-design simulation

A. F. Habib et.al., publication in preparation

O State-of-the-art NdFeB undulator
O Undulator period: A, = 1.5 cm
O Undulater parameter: K~ 1.8

©—

\'Ohoi'ons

o000

“”d“/ator O Resonace wavelength: 2. = 0.45 nm
o _ GW-level power gain fs-scale X-ray radiation pulse 0.35% bandwidth radiation
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Radiation wavelength: A, ~0.45 nm
Radiation bandwidth: ~0.1-0.35%
Saturation power: ~ GW-level

Radiation pulse duration: ~fs = Potential for sub-fs pulses

Saturation length: ~ 8-10 m
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Preliminary X-ray free-electron laser results

Benchmark with unaveraged FEL code Puffin (Parallel Unaveraged Fel INtegrator)
LT Campbell and BWJ McNeil, Physics of Plasmas 19, 093119 (2012)

“Unaveraged” FEL code

g
g

g
g

Power (W)

Not slowly varying envelope approximation (SVEA) and wiggler period averaging

approximations.
CSR is taken into account

Puffin results show excellent agreement with genesis simulation

Puffin results indicates sub-fs hard X-ray pulses—> single spike XFEL ?
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Summary

O Relative energy spread is reduced down to
AW.,s/W = 0.08 % and can be potetially
decreased further to AW,,,s/W < 0.01 %

O Unprecedented ultrahigh 6D-brightness beams
are produced

O 6D-brightness technique potentially game-
changing for light sources and applications

O Electron beam 6D-brightness remains preserved
during the extraction from the plasma stage and
trasnport towards the undulator

O XFEL saturations after ~10 m, radiation
wavelength of 1, ~ 0.45 nm

Peak brilliance [Phot./(sec. mrad”* mm?® 0.1% bw)]

O X-ray pulse of fs/sub-fs duration with GW-level
peak power
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Vision and roadmap

PHILOSOPHICAL TRANSACTIONS
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Directions in particle beam-driven plasma wakefield
acceleration
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XFEL

«—2 2011 Invention Plasma Photocathode
Roadmap

Invention Plasma Torch Density Downramp Injection

Energy chirp control for ultrahigh 6D brightness

E-210: 1st density downramp injection [
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Mission

O Much higher beam quality than state-of-the art, supported by novel enabling plasma
sources and plasma-based diagnostics, will allow to realize advanced applications
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betacx, betacy (m)
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WP 14 Beam Quality Transformer

Trojan Horse plasma photocathode

Photon Science

Intense
Electron Source
Y
. c)()‘b‘
Trojan <& (\é,c,
Horse/ & . &
NeXourceo o) 8’ 2 eg.boost FEL gain,
o '1,(06 ultrashort y-pulses,
2 multicolor beams...
Ui, High
LINAC—LWFA aloy,, Ener y
plasma photocathode: 6'7"'709 ’Ta,,c yslics

emittance, brightness, M raq
energy, energy spread
& stability transformer

LWFA

e.g. as injector,
staging..



