X-FELs driven by GeV and 10s of GeV electrons from density downramp injection

Xinlu Xu, Fei Li, Zhen Zhang, Mark Hogan, Vitaly Yakimenko, Chan Joshi and Warren Mori SLAC National Accelerator Laboratory University of California, Los Angeles

01/11/2019 FACET-II Science Workshop 2019

X-FELs driven by plasma-based acceleration (PBA)

- Beam quality requirements to drive a X-FEL
- (1) Emittance & Current: $\rho = \frac{1}{\gamma_b} \left[\left(\frac{K_u f_c}{4k_u} \right)^2 \frac{\gamma_b}{\beta \epsilon} \frac{I_b}{I_A} \right]^{1/3}$ $L_{sat} \approx \frac{\lambda_u}{\rho}, P_{sat} \approx \rho P_{beam}$ (2) Energy spread: $\frac{\sigma_{E_b}}{E_b} < \rho (10^{-3} \sim 10^{-4})$ > Typical energy spread from PBA: ~1% Stretch the beam longitudinally¹ Stretch the beam transversely + Transverse-Gradient Undulator² > Control the injection and acceleration processes
- (3) Energy: ~GeV to reach 1nm wavelength $\lambda_r = \frac{\lambda_u}{2\gamma_h^2} \left(1 + \frac{K^2}{2}\right)$

¹A. R. Maier et al., PRX 2.031019 (2012); ²Zhirong Huang et al., PRL 109, 204801 (2012). si ac

- High power: 1~10 TW and more $P_{sat} \approx \rho P_{beam} \propto I_0^{4/3}$ High current: 10s of kA and more
- Short wavelength: 1nm~0.01nm and shorter $\lambda_r = \frac{\lambda_u}{2\gamma_b^2} \left(1 + \frac{K^2}{2}\right)$ High energy: GeV ~10s of GeV
- Short duration: attosecond

Short beam/Controlled chirp for further compression

Controlled Injection schemes:

- Ionization-based injection¹: 10s of nm, ~kA
- Density downramp injection²: 10s of nm, ~10s of kA

¹B. Hidding et al., PRL 108, 035001 (2012); F. Li et al, PRL 111, 015003 (2013); X. L. Xu et al., PRL 112, 035003 (2014); G. G. Manahan et al., 10.1038/ncomms15705 (2017); ²J. Grebenyuk et al., NIMA 740, 264 (2014); X. L. Xu et al., PRAB 20, 111303 (2017).

X-FELs based on density downramp injection

	E _d [GeV]	l [kA]	σ _r [um]	σ _z [un	n] ε _n [um] Q [nC]
Driver beam	2	34 (/=4)	2.7	5.3	5.3	1.5
	n _{p,h} [cm ⁻³]	n _{p0} [cm ⁻³]	L _{ramp} [mm]		L _{acc} [mm]	Initial T [eV]
Plasma	1.1e18	1e18	0.53		5.22	[0.5, 0.5, 0.5]

Density downramp injection

 Injection mechanism: decreasing the phase velocity of the wake by a density downramp.

¹S. Bulanov, et al., Phys. Rev. E 58, R5257 (1998); ²H. Suk, et al., Phys. Rev. Lett. 86, 1011 (2001);

Generation of low emittance electrons

• "Transverse Deceleration" when the e⁻ move to the tail of the wake.

X. L. Xu et al., Phys. Rev. Accel. Beams. 20, 111303 (2017).

Generation of low emittance electrons

Longitudinal mapping

At the end of the ramp (z=1.17 mm)

- Break the longitudinal phase mixing which leads to a low slice energy spread, O(0.1) MeV.
- Induce a energy chirp which leads to a high energy beam without chirp.
- Compress the beam which leads to a high current, 10s of kA (~0.5 I_d).

Longitudinal phase space rotation

Evolution of the average energy and energy spreads

Solid lines: L_{ramp}=0.532 mm Dashed lines: L_{ramp}=0.426 mm

Chirp after the ramp: $\frac{\mathrm{d}\gamma_b}{\mathrm{d}\hat{\xi}} \approx -\frac{\hat{E}_z}{2\sqrt{2I_d/I_A}} \left(\frac{\mathrm{d}\hat{n}_p}{\mathrm{d}\hat{z}}\right)^2$

Acceleration gradient:

$$\hat{E}_z \approx \hat{E}_{z0} + \frac{\mathrm{d}\hat{E}_z}{\mathrm{d}\hat{\xi}}(\hat{\xi} - \hat{\xi}_b)$$

The projected energy spread achieves its minimum at $\hat{L}_a \approx \frac{\hat{E}_{z0}}{4g(\mathrm{d}\hat{E}_z/\mathrm{d}\hat{\xi})}$

where the energy is

Put the numbers in, $L_a \approx 6 \text{ mm}$ (5.2 mm from simulations).

Improve the energy by increasing the ramp length

At the end of the ramp

	E _d [GeV]	l [kA]	σ _r [um]		σ _z [um]		ε _n [um]	Q [nC]
Driver beam	10	68 (A=8)	0.85 (matched)		5.3		12.7	3
	n _{p,h} [cm ⁻³]	n _{p0} [cn	n ⁻³]	L _{ramp} [mr	[mm] In		ial T [eV]	
Plasma	1.05e18	1e18	3	2.66		0.5		

Simulation challenges

 Numerical errors when modelling relativistic particles in PIC codes¹: Numerical Cerenkov radiation + Numerical space charge like field

Matching: Plasma matching section + Magnetic Quads

 Goal: Enlarge the beam size while preserving the beam quality (emittance, peak current and energy spreads)

Energy change: -3.7 MeV (1347 MeV -> 1343 MeV);

Other parameters (current, energy spreads) vary little.

Matching: Plasma matching section + Magnetic Quads

Designed and simulated using Elegant.

FEL radiation: ~1 nm, 100s of GW in meter long undulator

• Undulator: $\lambda_u = 0.5$ cm, K=1.4, $\lambda_r = 0.716$ nm (1.73 keV)

FEL radiation: ~0.01 nm, 100s of GW in 10s of meter undulator

- Beam: E_b=18.8 GeV, ε_N≈200 nm, I_b≈60 kA, σ_{Eb}≈4 MeV.
- Undulator: λ_u =1 cm, K=1.4, λ_r =0.00731 nm (0.17 MeV)

- We studied generations of GeV high quality electrons in downramp injection and explored the possibility of generation of 10s of GeV electrons.
- Start-to-end simulations are done to demonstrate how to drive a X-FEL (~1nm) using electrons from plasma accelerators.