HGT D in ATLAS: Simulation study of t_0 calibration for HL-LHC

Motivation

HL-LHC challenges:
- Pileup $< \mu >$ > 200
- Stochastic pileup jets

To encounter the HL-LHC challenges, the High-Granularity Timing Detector (HGTD) is a new detector proposed to resolve the temporal spread of a bunch crossing:
- Forward region, $2.4 < \eta < 4.0$
- Timing resolution from 30-50 ps per track
- Use timing to resolve the vertices equally in z, but distributed in time

Objectives

- Introduce t_0 calibration.
- How to compute calibration constants.
- Results.

Why do we need t_0 calibration?

- The time of arrival of a hit measured in HGTD (t_{hits}) will be different between pads due to electronics contributions:
 - Flex, IpGBT, FELIX, ...
- The different jitter contributions have been parametrized using MC samples.

t_0 calibration methodology

- The calibration constants are calculated at regular intervals of events as the arithmetic mean of t_{hits} distributions.
- $t_{\text{calib}} = t_0 = t_{\text{hits}} - < t_{\text{hits}} >$
 where:
 - $< t_{\text{hits}} >$ = calibration constant

Objectives

- Introduce t_0 calibration.
- How to compute calibration constants.
- Results.

Why do we need t_0 calibration?

- The time of arrival of a hit measured in HGTD (t_{hits}) will be different between pads due to electronics contributions:
 - Flex, IpGBT, FELIX, ...
- The different jitter contributions have been parametrized using MC samples.

t_0 calibration methodology

- The calibration constants are calculated at regular intervals of events as the arithmetic mean of t_{hits} distributions.
- $t_{\text{calib}} = t_0 = t_{\text{hits}} - < t_{\text{hits}} >$
 where:
 - $< t_{\text{hits}} >$ = calibration constant

Motivation

HL-LHC challenges:
- Pileup $< \mu >$ > 200
- Stochastic pileup jets

To encounter the HL-LHC challenges, the High-Granularity Timing Detector (HGTD) is a new detector proposed to resolve the temporal spread of a bunch crossing:
- Forward region, $2.4 < \eta < 4.0$
- Timing resolution from 30-50 ps per track
- Use timing to resolve the vertices equally in z, but distributed in time

Objectives

- Introduce t_0 calibration.
- How to compute calibration constants.
- Results.

Why do we need t_0 calibration?

- The time of arrival of a hit measured in HGTD (t_{hits}) will be different between pads due to electronics contributions:
 - Flex, IpGBT, FELIX, ...
- The different jitter contributions have been parametrized using MC samples.