

HGTD in ATLAS : Simulation study of t_0 calibration for HL-LHC

Tnourji Abdellah for the ATLAS collaboration | SSI 2020 ¹

¹LPC Clermont-Ferrand, CNRS/IN2P3, Université Clermont Auvergne, France

Motivation

HL-LHC challenges:

- Pileup $<\mu>\sim$ 200
- z spread: 150ps (≈ 44mm nominal)
- Stochastic pileup jets
- t spread: 175ps (nominal)

To encounter the HL-LHC challenges, The High-Granularity Timing Detector(HGTD) is a new detector proposed to resolve the temporal spread of a bunch crossing:

- Forward region, 2.4 < η < 4.0
- Timing resolution from 30-50 ps per track
- Use timing to resolve the vertices «equal» in z, but distributed in time

Figure 1. HGTD

Objectives

• Introduce t_0 calibration.

constants.

- How to compute calibration
- Results.

Why do we need t_0 calibration?

- The time of arrival of a hit measured in HGTD (t_{hits}) will be different between pads due to electronics contributions :
- Flex, lpGBT, FELIX,...
- The different jitter contributions have been parametrized using MC samples.

Figure 2. Source of electronics imperfections.

t_0 calibration methodology

• The **calibration constants** are calculated at regular intervals of events as the arithmetic mean of t_{hits} distributions.

- $t_{calib} = t_0 = t_{hits} \langle t_{hits} \rangle$ where :
- $< t_{hits} >$ = calibration constant

Figure 3. Hits in HGTD

 The number of events and the calibration method strongly affects the precision of the calibration constants.

Figure 4. Calibration Methods

• Time1kHz : t_{hits} + jitter contributions.

Figure 5. Calibration constant vs Event number. Calibration every 10 event.

Result 1

 The injected 1kHz fluctuation is clearly visible. Calibration per module shows good results with comparison with others calib. methods.

Timing correction

Figure 6. t_{hits} calibrated every 10 events.

Result 2

- Calibration per module and using short interval of event show smaller RMS distribution.
- Calibration per module best absorb the effect of 1khz variation.

Time of flight (ToF) effects

Figure 7. Time calibrated vs module radius

Result 3

ToF effects are absorbed using the calibration per module method.

References

[1] ATLAS Collaboration Technical Design Report: A High-Granularity Timing Detector for the ATLAS Phase-II Upgrade CERN-LHCC-2020. CERN Geneva: https://cds.cern.ch/record/2721909?