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Abstract
Measurements made recently by the STAR col-
laboration show that the Λ hyperons produced
in relativistic heavy-ion collisions are subject to
global spin polarization with respect to an axis
coincident with the axis of rotation of the pro-
duced matter. Recently formulated formalism
of relativistic hydrodynamics with spin, which
is a generalization of the standard hydrodynam-
ics, is a natural tool for describing the evolu-
tion of such systems. This approach is based on
the conservation laws and the form of energy-
momentum tensor and spin tensor postulated by
de Groot, van Leeuwen, and van Weert (GLW).
Using Bjorken symmetry we show how this for-
malism may be used to determine observables
describing the polarization of particles measured
in the experiment.

Motivation
So far the studies of spin polarization of particles
measured in heavy-ion collisions dealt mainly
with the spin polarization of particles at freeze-
out. In these approaches, the basic hydrody-
namic quantity giving rise to spin polarization
is so called thermal vorticity. These calculations
lack however the dynamical evolution of the spin
polarization which takes place in the system’s
evolution. In our approach we extend the stan-
dard hydrodynamical perfect-fluid framework to
describe the dynamics of the spin degrees of free-
dom. Within this approach we aim at describ-
ing longitudinal polarization of particles as mea-
sured recently by the STAR experiment.

Hydrodynamic equations
For perfect fluid hydrodynamics framework for
spin 1

2 particles we use the conservation laws
for charge, energy, linear momentum and an-
gular momentum with the GLW-based forms
of the energy-momentum and spin tensor with
the assumption that spin polarization is small
(|ωµν | < 1)

∂µN
µ = 0 ∂µT

µν
GLW = 0 ∂λJ

λµν
GLW = 0

where
Nα = nUα

TαβGLW = (ε+ P )UαUβ − Pgαβ

The polarization tensor is decomposed w.r.t
fluid flow vector uβ in the following way

ωµν = κµuν - κνuµ + εµνβγu
βωγ

where κ · u = 0 and ω · u = 0.
The energy-momentum tensor used in the GLW
formalism is symmetric, thus the conservation
of the angular momentum implies conservation
of its spin part:

∂λS
λ,µν
GLW (x) = 0,

Sλ,µνGLW = h̄w
4ζ uλ ωµν + 2h̄ sinh (ζ) cosh (ξ)

m2ζ sλ,µνGLW

where, w = 4 sinh (ζ) cosh (ξ)n0(T ),
sλ,µνGLW = Auλuαu[µw

ν]
α + B∆λαu[µw

ν]
α +

Buλ∆α[µw
ν]
α + Buα∆λ[µw

ν]
α,

B = - 1
β

(
ε(0)(T ) + P(0)(T )

)
,

A = -3B+m2

T P(0)(T )

Spin polarization tensor and boost-invariant flow
For boost invariant and transversely homogeneous systems, we introduce the following basis:

uα = (cosh η, 0, 0, sinh η), Xα = (0, 1, 0, 0), Y α = (0, 0, 1, 0), Zα = (sinh η, 0, 0, cosh η)

where, τ =
√
t2 − z2 and η = 1

2 ln((t+ z)/(t− z)).
Using above basis, one can decompose the vectors κµ and ωµ as:
κα = CκX Xα + CκY Y α + CκZ Zα; ωα = CωX Xα + CωY Y α + CωZ Zα,
where the coefficients CκX , CκY , CκZ , CωX , CωY , and CωZ are functions of the proper time τ only.
Using the above forms of κα and ωα in conservation law of spin tensor and projecting the resulting
tensor equation on uµXν , uµYν , uµZν , YµZν , XµZν and XµYν , we obtain the set of the equations
for the coefficients C. These coefficients turn out to evolve independently. The coefficients CκX
and CκY (and similarly CωX and CωY ) obey the same differential equations due to the rotational
invariance in the transverse plane.

Information about spin polarization of particles at freeze-out
The average spin polarization per particle is given by

〈πµ〉 =
Ep

dΠµ(p)

d3p

Ep
dN(p)

d3p

where,

Ep
dΠµ(p)

d3p
= − cosh(ξ)

(2π)3m

∫
∆Σλp

λ e−β·p ω̃µβp
β .

Ep
dN (p)

d3p
=

4 cosh(ξ)

(2π)3

∫
∆Σλp

λ e−β·p .

In the local rest frame of the particle, polarization vector 〈π?µ〉 can be obtained by using the canonical
boost. Its longitudinal component is given as:

〈π?z〉 =
1

8mK1 (m̂T )

((m cosh(yp) +mT

mT cosh(yp) +m

)(
(K0 (m̂T ) +K2 (m̂T )) (CκXpy − CκY px)

+2CωZmTK1 (m̂T )
)

+
m (K0 (m̂T ) +K2 (m̂T )) sinh(yp) (CωXpx + CωY py)

mT cosh(yp) +m

)
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Fig 1: Proper-time dependence of temperature
T divided by its initial value T0 (solid line) and
the ratio of baryon chemical potential µ and T
rescaled by the initial ratio µ0/T0 (dotted line).
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Fig 2: Proper-time dependence of the coeffi-
cients CκX , CκZ , CωX and CωZ .
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Fig 3: Components of mean polarization of Λ-
hyperon in the rest frame of the particle at
yp = 0 obtained with the initial conditions
µ0 = 800 MeV, T0 = 155 MeV, Cκ,0 = (0, 0, 0),
and Cω,0 = (0, 0.1, 0).
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