We consider a universe filled with perfect fluid with
the constant equation of state p = we and w = const.
In the theory of scalar perturbations, we study the
effect of peculiar velocities on the gravitational
potential. For radiation with w = 1/3, we obtain the
expression for the gravitational potential in the
integral form. Numerical calculation clearly
demonstrates the modulation of the gravitational
potential by acoustic oscillations due to the
presence of peculiar velocities. We also show that
peculiar velocities affect the gravitational potential in
the case of the frustrated network of cosmic strings
with w = -1/3.
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Figure 1: Gravitational potentials in the case of radiation for different values
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Effect of peculiar velocities on the gravitational potential in cosmological
models with perfect fluids

Starting from an arbitrary value of w, we then
concentrated on relativistic fluid with w = 1/3.
Here, peculiar velocities undergo acoustic
oscillations. In the momentum space, we have
obtained the formulas for the gravitational
potentials both in the presence and absence of
peculiar velocities.

To get the exact form of potentials in the
position space, we have assumed that the
matter fluctuation is a localized inhomogeneity
in the form of the delta function. If we neglect
peculiar velocities, then the gravitational
potential has the form of the Yukawa potential.

Since the  Fourier integral for the
velocity-dependent potential can be calculated
only numerically, we have depicted the results
graphically in figures 1 and 2.. These figures
clearly demonstrate the modulation of the
gravitational potential by acoustic
oscillations due to the presence of peculiar
velocities.

To illustrate the effect of the peculiar velocities
on the gravitational potential, we also
considered the case of the frustrated network of
cosmic strings with w = —-1/3 (figures 3 and 4).

In this exceptional case, acoustic oscillations
are absent. Nevertheless, the difference
between the figures demonstrates the effect of
peculiar velocity.

111 ) =
) b2
| __®
) b,

a1
o
¢ A\ B =101
o\
o\
| \
| \
: N

O"ET ___________ _‘____T_T_::t_?:e ____________

0 D 10 15 20

Figure 3: Gravitational potentials in the case of the frustrated network of cosmic

Initial model
For the considered model, the background
Friedmann equation is

3H*  3H*

7 = C_2 = K&,

the perturbed (because the background matter

Is perturbed by inhomogeneities of perfect fluid)

metrics in conformal Newtonian gauge looks like
ds* = a*()[(1 + 2®)dn* — (1 — 2®)dr?],

and the perturbed Einstein equations read
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where v(n, r) is the peculiar velocity potential.
The energy density fluctuation can Dbe

expressed as follows
0A
08 = 3(1+w)
where O is singled out.
The perturbed Einstein equation, rewritten in
momentum space with the help of the Fourier
transform

+3(1+w)ed,

F(r) = 2n)3/? f dke™ F(K) .
R3
The general solution is

O(n) = C1n"J_(uskn) + Con” J,(uskn), us #0,
where Jv are Bessel functions and
B 543w
 2(1 +3w)°
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Relativistic perfect fluid
If to neglect the contribution of peculiar

velocity, then the matter density fluctuation is
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On the other hand, the peculiar velocity
contribution leads to the appearance of an
additional k-dependent term:
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of the parameter n. The dashed blue line corresponds to pure Yukawa potential
and the solid orange line takes into account the effect of peculiar velocity.

Figure 2: Gravitational potentials (41) ¢(¢) where ¢ = r/n. Dashed blue and ~ Figure 4: Gravitational potentials (55) $(¢§) where £ = Br. The dashed blue and
solid orange lines have the same meaning as in Figure (1). the solid orange lines have the same meaning as in Figure (3).

strings for parameter B = 0.1. The dashed blue line corresponds to pure Yukawa
potential, and the solid orange line takes into account the effect of peculiar
velocity.
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