Search for Dark Matter in association with an energetic photon in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

ATLAS-CONF-2020-020

According to several astrophysical and cosmological evidences, Dark Matter (DM) accounts for about 27% of the Universe mass-energy, but its nature and properties are still largely unknown. Production at colliders is one of the possible strategies for DM detection, and it is being explored in a comprehensive effort within the ATLAS Collaboration at CERN. In this context, the Mono-γ analysis searches for an excess of events in final states with one energetic photon and missing transverse momentum in proton-proton collisions at the Large Hadron Collider (LHC). The full Run2 data collected in 2015-2018 by the ATLAS detector, at a centre-of-mass energy of 13 TeV and corresponding to a total integrated luminosity of 139 fb$^{-1}$ is used, and the results are interpreted in terms of production of Weakly-Interacting Massive Particles (WIMPs) or Axion-Like Particles (ALPs).

Motivation

- DM production in proton-proton collisions at LHC is possible, if DM interacts with Standard Model (SM) particles.
- The production of DM particles, invisible to the detector, in association with a SM particle X (photon, W, Z, Higgs or jet) leads to a Mono-γ signature: the visible particle recoils against undetected DM, thus producing an unbalance in the total transverse energy of the final state known as the missing transverse momentum (E_t^miss).
- An excess of events with high E_t^miss with respect to SM expectations can be interpreted in terms of DM production.

Signal models

Two models of DM production have been considered:

- **WIMPs production**
 - Simplified DM model of DM production in an s-channel with vector or axial-vector mediator.
 - Free parameters: Mediator mass, DM mass, Mediator couplings to SM and DM sectors, Decay width, fixed to minimal value.

- **ALPs production**
 - Effective Field Theory with scale f_a.
 - SM Lagrangian extended with a single scalar (ALP)
 - The assumption of null coupling to photons (motivated by experimental constraints), reduces the free parameters to: Theory scale, f_a.
 - Coupling c_a to W boson.

Analysis strategy and results

Real photon backgrounds: MC expectations are normalized to data through a background-only likelihood fit performed simultaneously in dedicated Control Regions (CRs), each enriched with a specific background.

Fake Photons backgrounds: due to jets or electrons misidentified as photons, mainly in $W/Z + jets$

Agreement between data and SM expectations, after background-only multi-bin fit (in SRE1, SRE2, SRE3, SRE4). Experimental and theoretical systematic uncertainties included as nuisance parameters of the likelihood function.

Interpretation of results

A simultaneous likelihood fit, including a signal component, is performed separately in each SR (single-bin fit) or in all SRS (multi-bin fit) and associated CRs.

Model independent limits on the visible cross-section of new physics (single-bin fit)

<table>
<thead>
<tr>
<th>Signal region $\sigma (\alpha \times A x s)^{\text{eff}}/[\text{fb}]$</th>
<th>$\sigma (\alpha \times A x s)^{\text{eff}}/[\text{fb}]$</th>
<th>H_{exp} [fb]</th>
<th>$\sigma (\alpha \times A x s)^{\text{eff}}/[\text{fb}]$</th>
<th>H_{exp} [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRI1 2.54</td>
<td>1.79</td>
<td>10.77</td>
<td>353</td>
<td>76</td>
</tr>
<tr>
<td>SRI2 1.48</td>
<td>1.67</td>
<td>4.06</td>
<td>205</td>
<td>74</td>
</tr>
<tr>
<td>SRI3 0.96</td>
<td>1.07</td>
<td>2.39</td>
<td>133</td>
<td>72</td>
</tr>
<tr>
<td>SRI4 0.57</td>
<td>0.65</td>
<td>126</td>
<td>80</td>
<td>67</td>
</tr>
<tr>
<td>SRE1 2.18</td>
<td>2.17</td>
<td>0.01</td>
<td>364</td>
<td>75</td>
</tr>
<tr>
<td>SRE2 1.07</td>
<td>1.15</td>
<td>0.43</td>
<td>149</td>
<td>75</td>
</tr>
<tr>
<td>SRE3 0.80</td>
<td>0.81</td>
<td>0.36</td>
<td>112</td>
<td>71</td>
</tr>
</tbody>
</table>

Model dependent limits on ALP production (multi-bin fit)

Model dependent limits on WIMP production (multi-bin fit)

Free couplings: $g_1=0.25$, $g_0=0$ (for Axial-Vector and Vector mediators or $g_1=g_0=0.1$ (0.01) for Axial-Vector (Vector) mediator.

No excess observed within uncertainties => set 95% CL limits.