MATHUSLA

The proposed MATHUSLA detector is a large-volume surface detector, to be
placed near CMS [3-4].

The goal is to instrument a large volume to search for displaced vertex (DV)
decays of ultra long-lived particles produced at the LHC, focusing on decay
lengths ¢t > 100 m.

MATHUSLA will be equipped with an internal trigger system for LLPs.

The trigger rate will be low enough that the MATHUSLA trigger can also act as
a Level-1 burst-trigger for CMS: If the upwards tracks originate from the decay
of an LLP, there is a range of < 10 candidate LHC bunch crossings that are very
likely to include the production event at CMS.

MATHUSLA can measure the velocity of LLPs from the geometry of their
decays [5].
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LLP Simplified Models

« We simulate LLPs produced under a variety of simplified model production

modes [1,7-10].

This set of simplified models is meant to cover a wide range of well-motivated
LLP production scenarios while remaining agnostic of the underlying
mechanism generating the particles’ long lifetimes.

Figure 3: Schematic Feynman diagrams for the models we consider. {a): Exotic B-meson decay
(BB), with heavy neutral lepton and sealar LLPs. (b): Charged Current ( CC). (¢): Heavy Parent

(HP). (d): Exotic Higgs Decay (HIG) with gluon fusion and vector hoson fusion production
channels. (e): Direct Pair Production ( DPP). (f): Heavy Resonance (RES).
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Model Classification

« Our goal is to identify the production
mode of a sample of observed LLPs, from
the list of simplified models already
described.

« We assume that MATHUSLA observes
N,,.= 10,100 or 1000 LLP decays, all
resulting from the same single
production topology.

« Sample-level variables describing
characteristics of the entire observed LLP
dataset, like fraction of events with some
number of jets above some p; in CMS, are
used to classify the production mode.

« Using characteristic features of each
production mode, we find that simple
cuts in sample-level observables can be
used to achieve ~ 90% probability of
correct model classification for all but
small corners of BSM particle parameter
space with 100 observed events, and 98%
with 1000 observed events. For the BB,
CC, and HP models, >90% probabilities of
correct classification can be achieved
with only N, = 10 events.

Parameter Estimation

« The second task for which we would like to
estimate the prospective capabilities of
MATHUSLA and CMS is the measurement of the
properties of the newly discovered BSM particles.

« We assume the LLP production mode has been
correctly identified.

« We find estimators for m;; p, or —=2—

and Mparent

Mparent

if applicable and perform maximum likelihood
estimation on simulated samples with given N
to find the best-fit masses.

« The spread of best-fit masses gives an estimate of
MATHUSLA'’S precision for BSM particle mass
measurements.

- The LLP boost is highly (inversely) correlated with
m;p iIn models with one BSM mass, and correlated
With my;p/Mygrene IN Models with two BSM

particles.

« For the Charged Current, Heavy Parent, and Heavy
Resonance models, where there is a parent
particle with an unknown mass, another
observable using information from the main
detector is required.

« For the Charged Current model, the transverse
momentum of the associated lepton is correlated
With mygrent-

« For the Heavy Parent model, the scalar sum of jet
transverse momentum Hy is correlated with

Mparent-
« For the Heavy Resonance model, the number of

jets with p; > 20 GeV is correlated with m,4en;.
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Figure 4: Summary of our hierarchical LLP production mode classification algorithm.

Table 4: Breakdown of the Production Maode Classifior outpat, for pseado-data samples with 10,
100 or 1000 events, averaged over all LIP and parent particle masses simulated for each model.
Entries in row i, column j show the percentage of samples from model i classified as model j. 95%
confidence intervals ave shown for non-zero classification accuracies, accounting only for statistical
uneertainty due to the limited number of samples tested. The number of samples tested for each

Model

Nobs

mLLP

Tiparent T TELLP

PrECI=HITL

Mparent

precision

B decay

1
1
1o

0.3-0.7
0.1-02
< 0.05

Charped Current

1
1
1o

0.1
0.05
0.01

Heavy Parent

1
10
1o

0.2
0.05
0.01

Fxotic Higps decay

1
10
1o

0.15
0.05
0.01

Direct Pair Production

1
10
1o

0.3-0.5
0.1-0.2
03 — .07

Heavy Resonance (narrow )

10
10
100

0.07
0.02
0.01

Heavy Resonance (wide) Njet

10
10
100

0.12
0.05
0.02

(.15

Table 5: Summary of parameter estimation performance for all of the simplified models we consider.
The variables xq, 2 chosen to estimate BSM particle masses are listed. The precisions shown are
the characteristic standard deviation/ mean of best-fit masses for benchmark BSM particle masses

that are approximately representative for each maodel.
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