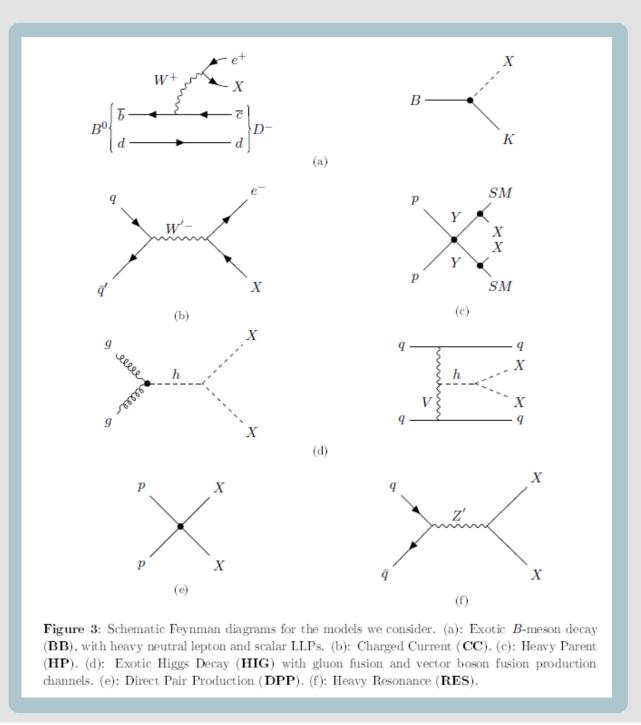

## Abstract

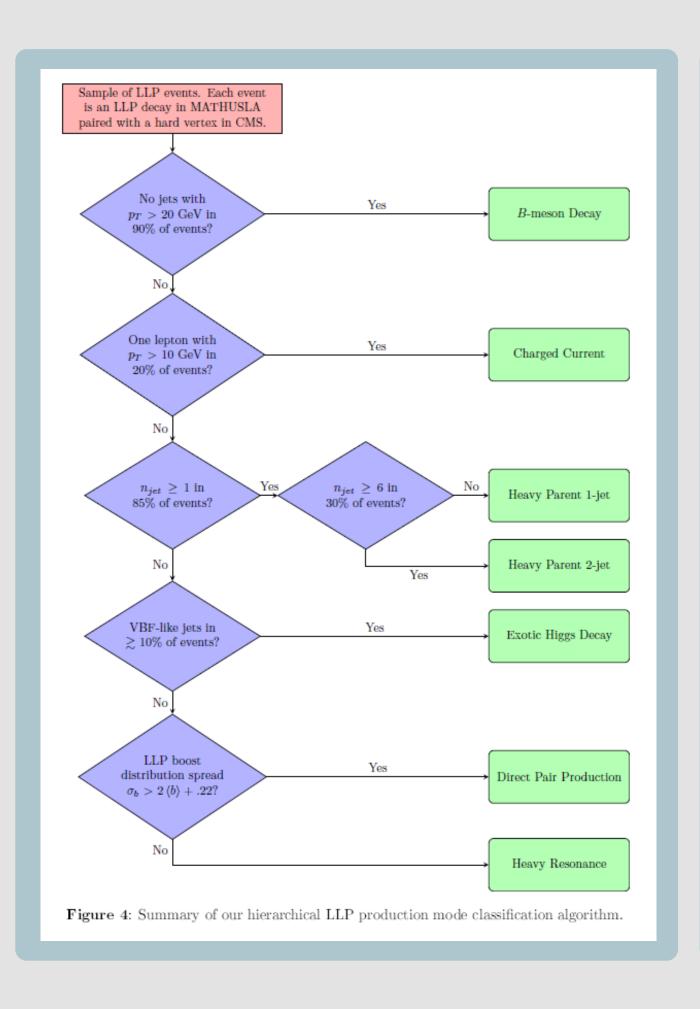
MATHUSLA is a proposed large-volume displaced vertex (DV) detector, situated on the surface above CMS and designed to search for long-lived particles (LLPs) produced at the HL-LHC. We show that a discovery of LLPs at MATHUSLA would not only prove the existence of BSM physics, it would also uncover the theoretical origin of the LLPs, despite the fact that MATHUSLA gathers no energy or momentum information on the LLP decay products. Our analysis is simple and robust, making it easily generalizable to include more complex LLP scenarios, and our methods are applicable to LLP decays discovered in ATLAS, CMS, LHCb, or other external detectors. In the event of an LLP detection, MATHUSLA can act as a Level-1 trigger for the main detector, guaranteeing that the LLP production event is read out at CMS. We perform an LLP simplified model analysis to show that combining information from the MATHUSLA and CMS detectors would allow the LLP production mode topology to be determined with as few as 100 observed LLP decays. Underlying theory parameters, like the LLP and parent particle masses, can also be measured with  $\approx 10\%$  precision. Together with information on the LLP decay mode from the geometric properties of the observed DV, it is clear that MATHUSLA and CMS together will be able to characterize any newly discovered physics in great detail.


#### MATHUSLA

- The proposed MATHUSLA detector is a large-volume surface detector, to be placed near CMS [3-4].
- The goal is to instrument a large volume to search for displaced vertex (DV) decays of ultra long-lived particles produced at the LHC, focusing on decay lengths  $c\tau > 100$  m.
- MATHUSLA will be equipped with an internal trigger system for LLPs. • The trigger rate will be low enough that the MATHUSLA trigger can also act as a Level-1 burst-trigger for CMS: If the upwards tracks originate from the decay of an LLP, there is a range of < 10 candidate LHC bunch crossings that are very likely to include the production event at CMS.
- MATHUSLA can measure the velocity of LLPs from the geometry of their decays [5]



## **LLP Simplified Models**


- We simulate LLPs produced under a variety of simplified model production modes [1,7-10].
- This set of simplified models is meant to cover a wide range of well-motivated LLP production scenarios while remaining agnostic of the underlying mechanism generating the particles' long lifetimes.



# **On the Origin of Long-Lived Particles** Jared Barron, David Curtin jared.barron@mail.utoronto.ca Department of Physics, University of Toronto Based on arxiv:2007.05538

## **Model Classification**

- Our goal is to identify the production mode of a sample of observed LLPs, from the list of simplified models already described.
- We assume that MATHUSLA observes *N<sub>obs</sub>* = 10, 100 or 1000 LLP decays, all resulting from the same single production topology.
- Sample-level variables describing characteristics of the entire observed LLP dataset, like fraction of events with some number of jets above some  $p_T$  in CMS, are used to classify the production mode.
- Using characteristic features of each production mode, we find that simple cuts in sample-level observables can be used to achieve  $\approx 90\%$  probability of correct model classification for all but small corners of BSM particle parameter space with 100 observed events, and 98% with 1000 observed events. For the BB, CC, and HP models, >90% probabilities of correct classification can be achieved with only  $N_{obs} = 10$  events.



### **Parameter Estimation**

- The second task for which we would like to estimate the prospective capabilities of MATHUSLA and CMS is the measurement of the properties of the newly discovered BSM particles.
- We assume the LLP production mode has been correctly identified.
- We find estimators for  $m_{LLP}$ , or  $\frac{m_{LLP}}{m_{narrent}}$  and  $m_{parent}$ *m*<sub>parent</sub> if applicable and perform maximum likelihood estimation on simulated samples with given N<sub>obs</sub> to find the best-fit masses.
- The spread of best-fit masses gives an estimate of MATHUSLA's precision for BSM particle mass measurements.
- The LLP boost is highly (inversely) correlated with  $m_{LLP}$  in models with one BSM mass, and correlated with  $m_{LLP}/m_{parent}$  in models with two BSM particles.
- For the Charged Current, Heavy Parent, and Heavy Resonance models, where there is a parent particle with an unknown mass, another observable using information from the main detector is required.
- For the Charged Current model, the transverse momentum of the associated lepton is correlated with  $m_{parent}$ .
- For the Heavy Parent model, the scalar sum of jet transverse momentum  $H_T$  is correlated with  $m_{parent}$ .
- For the Heavy Resonance model, the number of jets with  $p_T > 20$  GeV is correlated with  $m_{parent}$ .

| Model                                                                                                                   | $x_1$                | $x_2$            | $N_{obs}$ | $\frac{m_{LLP}}{m_{parent}}$ or $m_{LLP}$<br>precision | m <sub>parent</sub><br>precision |
|-------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|-----------|--------------------------------------------------------|----------------------------------|
| B decay                                                                                                                 |                      | -                | 10<br>100 | 0.3 - 0.7<br>0.1 - 0.2                                 | -                                |
|                                                                                                                         |                      |                  | 1000      | $\lesssim 0.05$                                        |                                  |
| Charged Current                                                                                                         |                      | $p_T^\ell$       | 10        | 0.1                                                    | 0.1                              |
|                                                                                                                         |                      |                  | 100       | 0.05                                                   | 0.02                             |
|                                                                                                                         |                      |                  | 1000      | 0.01                                                   | 0.01                             |
| Heavy Parent                                                                                                            |                      | $H_T$            | 10        | 0.2                                                    | 0.2                              |
|                                                                                                                         |                      |                  | 100       | 0.05                                                   | 0.05                             |
|                                                                                                                         |                      |                  | 1000      | 0.01                                                   | 0.01                             |
| Exotic Higgs decay                                                                                                      | $\log_{10}(b_{LLP})$ |                  | 10        | 0.15                                                   |                                  |
|                                                                                                                         |                      |                  | 100       | 0.05                                                   |                                  |
|                                                                                                                         |                      |                  | 1000      | 0.01                                                   |                                  |
|                                                                                                                         |                      | -                | 10        | 0.3 - 0.5                                              |                                  |
| Direct Pair Production                                                                                                  |                      |                  | 100       | 0.1 - 0.2                                              | -                                |
|                                                                                                                         |                      |                  | 1000      | .0307                                                  |                                  |
| Heavy Resonance (narrow)                                                                                                |                      | n <sub>jet</sub> | 10        | 0.07                                                   |                                  |
|                                                                                                                         |                      |                  | 100       | 0.02                                                   |                                  |
|                                                                                                                         |                      |                  | 1000      | 0.01                                                   | 0.15                             |
| Heavy Resonance (wide)                                                                                                  |                      | $n_{jet}$        | 10        | 0.12                                                   |                                  |
|                                                                                                                         |                      |                  | 100       | 0.05                                                   |                                  |
|                                                                                                                         |                      |                  | 1000      | 0.02                                                   | 0.15                             |
| <b>Table 5</b> : Summary of parameter<br>The variables $x_1, x_2$ chosen to ended the characteristic standard deviation | stimate BSM pa       | article m        | asses are | listed. The precision                                  | s shown are                      |

| Result                                                                                                    | BB                                            | CC                                           | $\operatorname{HP}$ 1-jet                    | HP 2-jet                                    | HIG                                             | DPP                                          | RES                               |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------|
| BB (4570)                                                                                                 | $98.4^{+0.3}_{-0.4}$                          | 0                                            | 0                                            | 0                                           | 0                                               | $1.4^{+0.4}_{-0.3}$                          | $0.2^{+0.2}_{-0.1}$               |
| CC (20920)                                                                                                | $4.0^{+0.3}_{-0.3}$                           | $93.5\substack{+0.3\\-0.3}$                  | $0.004^{+.017}_{004}$                        |                                             | $0.03\substack{+0.03\\-0.02}$                   | $2.2^{+0.2}_{-0.2}$                          | $0.2^{+0.1}_{-0.1}$               |
| HP 1-jet (26510)                                                                                          | $0.1^{+0.04}_{-0.03}$                         | 0                                            | $81.8^{+0.5}_{-0.5}$                         | $9.2^{+0.4}_{-0.3}$                         | $1.3^{+0.1}_{-0.1}$                             | $5.7^{+0.3}_{-0.3}$                          | $2.0^{+0.2}_{-0.2}$               |
| HP 2-jet (12360)                                                                                          | 0                                             | 0                                            | $19.9^{+0.7}_{-0.7}$                         | $78.8^{+0.7}_{-0.7}$                        | $0.5^{+0.1}_{-0.1}$                             | $0.8^{+0.2}_{-0.1}$                          | $0.1^{+0.1}_{-0.0}$               |
| HIG (28550)                                                                                               | $0.02^{+0.02}_{-0.01}$                        | $0.04\substack{+0.03\\-0.02}$                | $9.5^{+0.3}_{-0.3}$                          | 0                                           | $36.1^{+0.6}_{-0.6}$                            | $29.4^{+0.5}_{-0.5}$                         | $24.9^{+0.5}_{-0.5}$              |
| DPP (29120)                                                                                               | $0.01^{+0.02}_{-0.01}$                        | 0                                            | $17.5^{+0.4}_{-0.4}$                         | 0                                           | $12.3^{+0.4}_{-0.4}$                            | $48.0^{+0.6}_{-0.6}$                         | $22.2^{+0.5}_{-0.5}$              |
| RES NW (40160)                                                                                            | $4.7^{+0.2}_{-0.2}$                           | 0                                            | $7.6^{+0.3}_{-0.3}$                          | 0                                           | $14.0^{+0.3}_{-0.3}$                            | $3.0^{+0.2}_{-0.2}$                          | $70.7^{+0.4}_{-0.4}$              |
| RES HW (23100)                                                                                            | $3.9^{+0.3}_{-0.2}$                           | 0                                            | $6.6^{+0.3}_{-0.3}$                          | 0                                           | $14.9_{-0.5}^{+0.5}$                            | $11.4_{-0.4}^{+0.4}$                         | $63.1^{+0.6}_{-0.6}$              |
| $N_{obs} = 100$ :                                                                                         |                                               |                                              |                                              |                                             |                                                 |                                              |                                   |
| Result                                                                                                    | BB                                            | CC                                           | HP 1-jet                                     | HP 2-jet                                    | HIG                                             | DPP                                          | RES                               |
| Truth                                                                                                     | 55                                            | ~~                                           | 111 1 300                                    | 111 2 Joo                                   |                                                 | 211                                          | 1(13)                             |
| BB (457)                                                                                                  | $100.0^{+0.0}_{-0.5}$                         | 0                                            | 0                                            | 0                                           | 0                                               | 0                                            | 0                                 |
| CC (2092)                                                                                                 | 0                                             | $97.6^{+0.6}_{-0.7}$                         | 0                                            | 0                                           | 0                                               | $2.4^{+0.7}_{-0.6}$                          | 0                                 |
| HP 1-jet (2651)                                                                                           | 0                                             | 0                                            | $90.5^{+1.1}_{-1.2}$                         | $0.9\substack{+0.4\\-0.3}$                  | $1.0^{+0.4}_{-0.3}$                             | $7.3^{+1.0}_{-0.9}$                          | $0.3^{+0.3}_{-0.2}$               |
| HP 2-jet (1236)                                                                                           | 0                                             | 0                                            | $16.0^{+2.1}_{-2.0}$                         | $83.5^{+2.0}_{-2.1}$                        | $0.4^{+0.5}_{-0.2}$                             | $0.1\substack{+0.3 \\ -0.1}$                 | 0                                 |
| HIG (2855)                                                                                                | 0                                             | 0                                            | 0                                            | 0                                           | $90.4^{+1.0}_{-1.1}$                            | $7.4^{+1.0}_{-0.9}$                          | $2.2^{+0.6}_{-0.5}$               |
| DPP (2912)                                                                                                | 0                                             | 0                                            | $0.1^{+0.2}_{-0.1}$                          | 0                                           | $1.6^{+0.5}_{-0.4}$                             | $97.9^{+0.5}_{-0.6}$                         | $0.4^{+0.3}_{-0.2}$               |
| RES NW (4016)                                                                                             | 0                                             | 0                                            | 0                                            | 0                                           | $4.8^{+0.7}_{-0.6}$                             | $1.9^{+0.5}_{-0.4}$                          | $93.3^{+0.7}_{-0.8}$              |
| RES HW (2310)                                                                                             | 0                                             | 0                                            | 0                                            | 0                                           | $6.3^{+1.0}_{-0.9}$                             | $8.0^{+1.2}_{-1.1}$                          | $85.7^{+1.4}_{-1.5}$              |
| $N_{obs} = 1000:$                                                                                         |                                               |                                              |                                              |                                             |                                                 |                                              |                                   |
| Result                                                                                                    | BB                                            | CC                                           | HP 1-jet                                     | HP 2-jet                                    | HIG                                             | DPP                                          | RES                               |
| Truth                                                                                                     |                                               | ~~                                           | 111 1 100                                    |                                             |                                                 |                                              | 1000                              |
| BB (40)                                                                                                   | $100.0^{+0.0}_{-6.0}$                         | 0                                            | 0                                            | 0                                           | 0                                               | 0                                            | 0                                 |
| CC (191)                                                                                                  | 0                                             | $97.6^{+1.5}_{-3.0}$                         | 0                                            | 0                                           | 0                                               | $2.4^{+3.0}_{-1.5}$                          | 0                                 |
| HP 1-jet (246)                                                                                            | 0                                             | 0                                            | $92.7^{+2.8}_{-3.8}$                         | 0                                           | 0                                               | $7.3^{+3.8}_{-2.8}$                          | 0                                 |
| HP 2-jet (112)                                                                                            | 0                                             | 0                                            | $15.0^{+7.5}_{-5.7}$                         | $85.0^{+5.7}_{-7.5}$                        | 0                                               | 0                                            | 0                                 |
| HIG (282)                                                                                                 | 0                                             | 0                                            | 0                                            | 0                                           | $100.0^{+0.0}_{-0.9}$                           | 0                                            | 0                                 |
| DPP (274)                                                                                                 | 0                                             | 0                                            | 0                                            | 0                                           | 0                                               | $100.0\substack{+0.0\\-0.9}$                 | 0                                 |
| RES NW (390)                                                                                              | 0                                             | 0                                            | 0                                            | 0                                           | 0                                               | $1.7^{+1.7}_{-0.9}$                          | $98.3^{+0.9}_{-1.7}$              |
| RES HW (219)                                                                                              | 0                                             | 0                                            | 0                                            | 0                                           | $0.3^{+1.5}_{-0.2}$                             | $5.7^{+3.7}_{-2.5}$                          | $94.0^{+2.6}_{-3.7}$              |
| Table 4: Breakdo<br>100 or 1000 event<br>Entries in row i, c<br>confidence interval<br>uncertainty due to | s, averaged o<br>olumn j shov<br>ls are shown | over all LLF<br>v the percen<br>for non-zero | and parent<br>tage of samp<br>classification | t particle m<br>ples from m<br>on accuracie | asses simula<br>odel i classif<br>s, accounting | ted for each<br>ied as mode<br>g only for st | 1 model.<br>l j. 95%<br>atistical |

| Co                                                                                                          |
|-------------------------------------------------------------------------------------------------------------|
| Mai<br>incl<br>the<br>par<br>The<br>vita<br>spa<br>Allo<br>CM<br>dete                                       |
| For<br>sim<br>tim<br>tim<br>tim<br>per<br>the<br>squ<br>clas<br>bein<br>too<br>par<br>par<br>par<br>pre     |
| This<br>sim<br>mot<br>Fur<br>den<br>mea<br>app<br>to o<br>LLF<br>This<br>pote<br>COI<br>the<br>orig<br>grea |
| <b>Re</b> [1] J. Ali Collider [2] D. Cu 1806.07 [3] J. P. B767 (20 [4] MAT above A                          |



#### nclusion

ny well-motivated scenarios for BSM physics lude long-lived particles, and it is important that experimental search program for long-lived ticles continue to be developed and expanded. e proposed MATHUSLA detector represents a l part of that program, able to probe parameter ce inaccessible by any other experiment. owing MATHUSLA to act as a Level-1 Trigger for S is required to take full advantage of both ectors' potential.

heavy LLPs, an accurate diagnosis at the plified model level can be achieved > 90% of the e with only 100 observed events,  $\approx$  98% of the e with 1000 observed events. Similar formance is possible for lighter LLPs, except for Heavy Parent and Charged Current models with leezed spectra  $m_{LLP} \sim m_{parent} < 100$  GeV, where ssification fails because the associated objects ng used to identify the production mode become soft. With similar statistics, the underlying ameters of the simplified model, like LLP and ent particle mass, can be measured with ~ 10% cision or better in most cases.

s performance is achieved with extremely ple cuts and analyses using robust, physically tivated features of LLP production events. ther work is sure to improve on our nonstrated classification accuracy and asurement precision. Our methods are licable not just to MATHUSLA and CMS, but also other external LLP detector proposals, or even 's discovered using LHC main detectors alone. s emphasizes not only the great discovery ential of new LHC detectors like MATHUSLA [3], DEX-b [11] or FASER [12], but also shows that in event of a discovery, however it took place, the gin of Long-Lived Particles can be uncovered in at detail.

#### ferences

- imena et al., Searching for Long-Lived Particles beyond the Standard Model at the Large Hadron urtin et al., Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case,
- Chou, D. Curtin and H. J. Lubatti, New Detectors to Explore the Lifetime Frontier, Phys. Lett. )17) 29 [1606.06298] THUSLA collaboration, A Letter of Intent for MATHUSLA: a dedicated displaced vertex detector
- above ATLAS or CMS., 1811.00927. [5] D. Curtin and M. E. Peskin, Analysis of Long Lived Particle Decays with the MATHUSLA Detector, Phys. Rev. D97 (2018) 015006 [1705.06327] [6] MATHUSLA collaboration, MATHUSLA: A Detector Proposal to Explore the Lifetime Frontier at the
- HL-LHC, 2019, 1901.04040, http://mathusla.web.cern.ch [7] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., The automated computation of tree-level and next-to-leading order dierential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [1405.0301].
- [8] T. Sjostrand, S. Mrenna and P. Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175]. [9] T. Sjostrand, S. Mrenna and P. Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys.
- Commun. 178 (2008) 852 [0710.3820] [10] DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [1307.6346]
- [11] V. V. Gligorov, S. Knapen, M. Papucci and D. J. Robinson, Searching for Long-lived Particles: A Compact Detector for Exotics at LHCb, Phys. Rev. D97 (2018) 015023 [1708.09395]. [12] J. L. Feng, I. Galon, F. Kling and S. Trojanowski, ForwArd Search ExpeRiment at the LHC, Phys. Rev. D97 (2018) 035001 [1708.09389].