Positron transport and acceleration in beam-driven plasma accelerators using a plasma column

S. Diederichs,^{1, 2, 3} T. J. Mehrling,² C. Benedetti,² C. B. Schroeder,² A. Knetsch,³ E. Esarey,² and J. Osterhoff³ 18.09.19

¹ University of Hamburg, Institute of Experimental Physics, D-22761 Hamburg, Germany

² Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

³ Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany

Positron acceleration is a challenge

Positron acceleration is a challenge

Focusing field for positrons

No efficient and stable concept available!

with regard to positron acceleration

Modeling tools

- 2D axisymmetric
- PIC or fluid for plasma
- Quasi-static modality
- Dynamic time step adjustment + subcycling

C. Benedetti at al., AAC2010, AAC2012, ICAP2012, AAC2016, PPCF2017

- 3D Cartesian
- Quasi-static PIC

- Dynamic time step adjustment + subcycling
- High resolution subgrid in "dynamically interesting" domains
- Parallelized with MPI
- T.J. Mehrling et al., PPCF2014, AAC2018

in pre-ionized plasma columns

In the homogeneous, infinite plasma case:

in pre-ionized plasma columns

In the homogeneous, infinite plasma case:

-6

-2

0

 $k_p x$

-4

2

4

-1.2

6

in pre-ionized plasma columns

In the homogeneous, infinite plasma case:

-1.2

-0.6

6

4 -

2 -

in pre-ionized plasma columns

In the homogeneous, infinite plasma case:

Lack of ions due to finite plasma column leads to a **modified transverse wakefield**

6

in pre-ionized plasma columns

in pre-ionized plasma columns

1. Modified transverse wakefield

in pre-ionized plasma columns

2. Elongated electron trajectories

1. Modified transverse wakefield

in pre-ionized plasma columns

2. Elongated electron trajectories

1. Modified transverse wakefield

3. Long, high-density electron filament

in pre-ionized plasma columns

2. Elongated electron trajectories

3. Long, high-density electron filament

1. Modified transverse wakefield

4. Accelerating and focusing fields for positrons

in pre-ionized plasma columns

in pre-ionized plasma columns

in pre-ionized plasma columns

Drive beam parameters: $k_p \sigma_x = 0.3$, $k_p \sigma_z = \sqrt{2}$, $I_b / I_A = 1$

in pre-ionized plasma columns

Optimal plasma column radius (numerical fit):

 $k_p R_p \approx 2\sqrt[3]{2I_b/I_A}$

Drive beam parameters: $k_p \sigma_x = 0.3$, $k_p \sigma_z = \sqrt{2}$, $I_b / I_A = 1$

Positron transport and acceleration in plasma columns

Emittance preservation achievable with matched beams

Emittance preservation achievable with matched beams

Witness beam parameters:

 $k_p \sigma_x = 0.025, \, k_p \sigma_z = 0.5, \, n_b / n_0 = 500$

Emittance preservation achievable with matched beams

Witness beam parameters:

$$k_p \sigma_x = 0.025, \, k_p \sigma_z = 0.5, \, n_b / n_0 = 500$$

Quasi-matching condition for positron bunch with Gaussian transverse phase-space distribution

$$\sigma_x^3 \simeq 1.72 \frac{\epsilon_x^2}{\alpha \gamma}$$

 $\rightarrow 2\%$ rms emittance growth

Matching depends on longitudinal bunch position since $\alpha = \alpha(\zeta)$

C. Benedetti et al., PRAB 2017 S. Diederichs et al., PRAB 2019

Demonstration of emittance-preserving positron acceleration

Comparison to PIC simulation

Plasma column: $n_0 = 5 \times 10^{17} \text{ cm}^{-3}$, $\text{R}_\text{p} \approx 20 \mu \text{m}$

Driver beam parameters (Gaussian, non evolving): $\sigma_x = 2.3 \mu m$, $\sigma_z = 10.6 \mu m$, $I_b/I_A = 1$, $Q_b = 1.5 nC$

Witness beam parameters (Gaussian): $\sigma_x = 0.19 \mu m$, $\sigma_z = 3.75 \mu m$, $Q_b = 84 pC$, $\epsilon_x = 0.75 \mu m$

 \rightarrow 30 GeV/m accelerating gradient

Emittance growth from simulation: \rightarrow quasi-matched central slice: $\approx 3\%$ \rightarrow total (projected) bunch: $\approx 7\%$

Positron beam emittance evolution

Energy spread can be controlled by beam loading

Work in progress

DESY. S. Diederichs | severin.diederichs@desy.de | FACET-II Workshop | 31.10.2019

Concept has tolerance on shape of plasma column

Plasma column can be generated by beam-field-ionization

Work in progress

Expanded region of high electron density

Self-inherent alignment between drive beam and plasma column

Plasma column can be generated by beam-field-ionization

Work in progress

Expanded region of high electron density

Positron accelerating and focusing field don't match

Self-inherent alignment between drive beam and plasma column

Solvable by parameter optimization!

Coupled plasma column generation limits accelerating fields

$$k_p \sigma_x = 0.3, k_p \sigma_z = \sqrt{2}, n_b/n_0 = 2.9$$

 $n_0 = 1.25 \times 10^{18} \text{cm}^{-3}$

Solvable by full beam parameter, gas density & species optimization!

- Finite radius plasma columns have been proposed as structures suitable for positron transport and acceleration in a PWFA;
- The wakefield produced in these structures has been studied and optimized with respect to positron acceleration (an expression for the optimal radius has been obtained);
- Quasi-matching condition for a positron bunch has been obtained;
- PIC simulations show that by using plasma columns acceleration of positron beams with substantial charge while preserving the emittance is possible.

For more details, see our publication: Diederichs et al., Phys. Rev. Accel. Beams 22, 081301 (2019)

Acknowledgements

Timon J. Mehrling,

Carlo Benedetti,

Carl B. Schroeder,

Eric Esarey,

Alexander Knetsch,

Jens Osterhoff,

Sören Jalas,

Rémi Lehe and

Manuel Kirchen

