Opportunities for Attosecond Science At FACET-II (and beyond...)

A. Marinelli SLAC National Accelerator Lab

Collaboration

SLAC

Xinlu Xu Claudio Emma D. Cesar M. Hogan J. Cryan M. Hogan V. Yakimenko

UCLA

J. B. Rosenzweig W. Mori

Outline

SLAC

Science Motivation

Attosecond Light Sources

Opportunities for Advanced Accelerators:

-Attosecond plasma driven FELs -Relativistic Transition Radiation -Beam-based Ultrafast Science

Conclusions

Disclaimer: a lot of work in progress!

Ultrafast Timescales

Table-Top Attosecond Light Sources

A.S. Johnson et al. Science Advances Vol. 4, no. 5, 2018

Ekin (eV (a) (b) x16 124.4 e\ x16 -120 120 001 (eV) (eV) (eV) (eV) -80 EF CB/VB 49.5 -2 0 2 Mg 2p ∆t (fs)

Riemensberger et al. PHYSICAL REVIEW LETTERS 123, 176801 (2019)

-Established technique (Been around for ~20 years) Hentschel, M. et al. Attosecond metrology. Nature 414, 509 (2001). -Isolated pulses down to 50 as

-Scales very poorly to X-ray energies

Typical applications:

Dynamics induced by intense IR fields Measurement of photoemission delays

XLEAP: X-ray Laser-Enhanced Attosecond Pulse Generation

SLAC

J. Duris, S. Li et al. Nature Photonics (ACCEPTED)

Siqi Li J. Duris

Collaboration: SLAC (AD, LCLS, PULSE), ANL

LMU, Imperial, Max Planck, U. Kassel, TU Dortmund, TU Munich

Original concept using laser: Zholents PRSTAB 8, 040701 (2005).

XLEAP Streaking Measurements

Comparison

Comparison

Scientific Impact

-SLAC

Plasma-Based Attosecond FELs

Saldin, Evgeny L., Evgeny A. Schneidmiller, and Mikhail V. Yurkov. "Design formulas for short-wavelength FELs." *Optics communications* 235.4-6 (2004): 415-420.

 $L_g \propto \epsilon_n^{5/6} \rightarrow \Delta t_{min} \propto \epsilon_n^{5/6}$

After optimizing all parameters cooperation length almost proportional to emittance. Attosecond pulses from plasma photo-injectors!

B. Hidding, G. Pretzler, J. B. Rosenzweig, T. Königstein, D. Schiller, and D. L. Bruhwiler Phys. Rev. Lett. **108**, 035001

Beam from FACET-II plasma photo-injector sim. Assuming transport and ESASE compression

C. Emma

42 as - 2 TW at 1 nm. Factor 5 shorter than LCLS Comparable to shortest HHG pulse ever (10 M x brighter!)

Start-to-End Simulations

Xinlu Xu Claudio Emma

Attosecond Stability For Pump/Probe

Two-Color Attosecond Pulses

~100 as jitter

< 0.5 as jitter

Stop before saturation to achieve two-color lasing (10-20% saturation)... With PWFA approach pump/probe with TW peak power!

Equivalent to reflection of Transverse Coulomb field...

 $\frac{Z_0}{2\pi r}$ E_{\perp}

For FACET or LCLS fields as high as ~TV/m (few atomic units)

HOWEVER field is zero inside plasma due to shielding

Good Old Transition Radiation

 ρ (y=0 slice) Time = 0.00 [$1 / \omega_p$] 0 0 mailmunitum -2 10 -5.0000000×10^3 -4 x [micron] $ho~[{\rm en}_{\rm ref}]$ -6 0 -1.0000000×104 -8 -10 -1.5000000×10^{4} -10 -12 -20 -2.0000000×104 -3 3 -2 0 1 2 -1 z [micron] E_x (y=0 slice) Time = 0.00 $[1 / \omega_p]$ 20 5 10 x [micron] Ex [mcwrefe] 0 0 -10 -5 -20 -3 -2 -1 0 1 2 3 z [micron]

SLAC

[en_{ref}]

0

19

Beam-Based Ultrafast Science

$$E_{\perp} = \frac{Z_0 I(t)}{2\pi r}$$

- -High intensity (~10s to 100s GV/m)
- -Synchronized to FEL with attosecond precision
- -100% bandwidth

 $E_z < < E_\perp$

Where do we win? Attosecond time-scales (high field, good synch.) THz fields (much larger fields than tabletop)

Fields up to TV/m in half-cycle pulse!

J. B. Rosenzweig et al.: Teravolt-per-meter plasma wakefields from low-charge,

femtosecond electron beams NIMA 653.1 (2011): 98-102.

Photon-Electron Pump/Probe Experiment at LCLS

Sub-fs field: impulsively excite valence states

Opportunities with FACET-II Linac Beam

Repeat for following micro-bunches...

Ionization events from different micro bunches mapped onto different momenta!

Repeat for following micro-bunches...

Ionization events from different micro bunches mapped onto different momenta By unipolar E-field!

SFA Simulations + Radial Integration

Technique sensitive to ~20 as ionization delays Focal volume averaging kills signal for E > 100 GV/m Ion microscope for stronger fields?

- -Advanced accelerators offer unique opportunities for attosecond science due to bandwidth scaling of FEL with low emittance!
- -X-ray pulses as short as 40 as with multi TW peak power predicted from PWFA beams
- Exploring possibilities for attosecond pump/probe
 - Two-color
 - Relativistic transition radiation
 - E-beam space-charge field

Questions?

