Emergency Information

Fire

- Evacuate. Be aware of building exits.
- Follow building residents to the assembly area.

SLAC

 Do not leave until you are accounted for, and have been instructed to.

Earthquake

- Remain in building: duck, cover, and hold position.
- When shaking stops: evacuate building via a safe route to the assembly area.
- Do not leave until you are accounted for, and have been instructed to do so.

Concept for a Fully Non-perturbative QED Collider

Workshop on Physics Opportunities at a Lepton Collider in the Fully Non-perturbative QED Regime

Vitaly Yakimenko August 7, 2019

Strong Field QED in Laboratory Experiments

More details in talk by G. Dunne, A. Di Piazza, S. Meuren

SLAC

• Critical Field $E_{cr} \approx 10^{16} \, V/cm$ Critical Intensity $I_{cr} \approx 2.3 \, x \, 10^{29} \, W/cm^2$

• Decisive Measure: electric field in the particle rest frame (E^*) :

V. N. Baier et al, Interaction of highenergy electrons and photons with crystals. Sov. Phys. Usp. 32 972 (1989)

K. Yokoya and P. Chen, Frontiers of Particle Beams, 415–445 (1992)

 $\chi \ll 1$: classical regime: Quantum effects are small, pair production is exponentially suppressed $\chi \ge 0.1, \chi \le 10$: transition to quantum regime: Recoil and pair production are important $\chi \ge 10, \alpha \chi^{2/3} < 1$: quantum regime: Importance of pair production cascades, the radiation field is a perturbation $\alpha \chi^{2/3} \ge 1$ ($\chi \ge 1700$): fully non-perturbative regime: Perturbative treatment of the radiation field breaks down

Developing framework for non-perturbative regime was generally considered to be of minor academic interest for quantum electrodynamics because of the inaccessibly large field scale at which the breakdown occurs

V. Yakimenko, Workshop on Physics Opportunities at NpQED Collider, June 24-25, 2019

SLAC

Fully Non-Perturbative QED: Intuitive Picture

An electric field E introduces a new mass scale $m_{\gamma^2}(\chi) \sim \alpha M^2$, $M \sim eE\Delta t / c$, where Δt is characteristic time scale of quantum fluctuations The lifetime Heisenberg uncertainty principle: $\Delta t \Delta \varepsilon \sim \hbar$; $\Delta \varepsilon \sim (eE \Delta t/c)^2 / (\hbar \omega_{\gamma})^2$

Λt

The resulting field-induced mass scale $M \sim m\chi^{1/3}$ independent of *m* (note, $\chi \sim m^{-1/3}$), $m_{\gamma}(\chi) = \alpha \chi^{2/3} m$: breakdown of perturbation theory when $\alpha \chi^{2/3} \gtrsim 1$ or $m_{\gamma}(\chi) > m$

(pair particles)

Non-Perturbative Strong Field QED Collider Parameters

Key challenge: radiative energy loss in field transition (if $\chi \ge 1$) prevents

reaching $\chi \gg 1$

V. Yakimenko, Workshop on Physics Opportunities at NpQED Collider, June 24-25, 2019

SLAC

PHYSICAL

Phys. Rev. Lett. 122, 190404 (2019)

Hierarchy of Numbers that Enables NpQED Collider

- Radiative lifetime (125GeV, χ~1700):
 (length to emit hard photon with probability ~1)
- Field switching (bunch) length:
- Formation length for hard photon:

Simulations of relative energy loss:

$L_E \sim \gamma \hat{\lambda}_c / (\alpha \chi^{2/3}) \sim 100 \ nm$

σ_z	~ 10 nm
$L_f \sim \alpha L_E$	~ 1 nm

This hierarchy ensures:

- Majority of electrons go through the collision without emitting hard photons and preserving initial energy as a result ($\sigma_z \ll L_E$)
- Local Constant Field Approximations (LCFA) is valid ($L_f << \sigma_z$)

More details in talk by G. Dunne and A. Ilderton

Linear Collider Luminosity Optimization

Luminos	Beam Power sity: $L = \frac{P_b}{E_b} \frac{N_b}{4\pi\sigma_x\sigma_y}$ Beam Energy	umber of particles er bunch Area of the beam	$L \propto \frac{P_b}{E_b} \sqrt{\frac{\delta}{\epsilon}}$	$E_{ny} \sim \begin{bmatrix} Loss & of energ \\ with beamstrace \\ Normalized w \\ emittance \end{bmatrix}$	gy associated ahlung vertical
	Parameter	Symbol [Unit]	ILC (TDR)	NpQED Collider	
	Center mass Energy	E_{CM} [GeV]	2	50 GeV	
	Beam Energy	E [GeV]		125	
	Bunch Charge	<i>Q</i> [<i>nC</i>]	3.2	1.4	
	Peak Current	$I_{pk}[kA]$	0.4	1700	
	rms Bunch Length	$\sigma_{z} [\mu m]$	300	0.1	
	rms Bunch Size	$\sigma^{*}_{x,y}$ [μm]	0.73, 0.008	0.01, 0.01	
	Pulse rate x # Bunches/pulse	frep [Hz] x Nbunch	5 x 1312	700	
	Beamstrahlung Parameter	χ av , χ max	0.06, 0.15	969, 1721	
	Beam Power	<i>P</i> [<i>MW</i>]	2.6	0.12	
	Luminosity	$L [cm^{-2}s^{-1}]$		3E+33	

Present Linear Colliders designs use increased transverse beam size (flat bunches) to manage beamstrahlung

HEP LC with round bunches: ~10 times reduction of required beam power and corresponding reduction in cost by ~3 times

SLAC

FACET-II User Facility will Provide Access to Electron Bunches with Extreme Intensity

Low-emittance (state of the art photoinjector) and ultra-short (improved compression) beam will generate:

- >300 kA peak current (~0.4 µm long)
- ~100 nm focus by plasma ion column
- ~10¹² V/cm radial electric field (Es=1.3x10¹⁶ V/cm)
- ~10²⁴ cm⁻³ beam density

Proposals to further compress bunches to $I_{peak} > 1.5$ MA using wakefileds

Working Group to Study Challenges Associated with "Extreme" Compression: Stability of the Compression

Approaches to improved stability:

- Alternating sign and multi-stage compensation (equivalent to FODO focusing concept)
- High-Q RF (SRF) and resonant enhancement laser cavities for improved phase stability
- Passive chirpers: self induced wakes (longer bunch => smaller induced chirp)

Compensating Effect of the Coherent Synchrotron Radiation (CSR) in Bunch Compressors

- CSR is a key contributor in emittance degradation for short intense bunches
 - longitudinal energy variation induced by CSR wake is coupled to the transverse plane through nonzero local dispersions in the chicane
 D. Douglas, JLAB-TN-98-012, 1998
- Longitudinal and transverse degrees of freedom can be decoupled and detrimental effects of CSR can be mostly suppressed by using opposite sign dispersion with reversing bending directions

Emittance blowup due to CSR with single chicane

Emittance growth compensated with two chicanes

Cancelation of CSR kicks with optics balance were simulated and tested for 10kA beams. 3D CSR theory and experiments are needed for NpQED class beams

Merging high-energy, high transverse quality beams of linear collider designs with high peak-compression

Source: NpQED physics is mostly equivalent for either e-e- or e-e+ collisions

- first option mitigates the challenge of generating e⁺ with longitudinal brightness.
- next-generation cryo-photoinjectors promise factor >4 improvement in emittance: ~35µm at 100pC => focusing requirements same as the CLIC design (in the vertical plane)

Accelerators:

- Cryogenically cooled high gradient technology is attractive due to low average beam power requirement and will address tight phase stability requirement with High Q designs
- **Compression:** The required bunch compression extends the current state-of-the-art as expressed by the FACET-II design by a factor of ~10.
- Stability and beam quality preservation are the key challenges

Final Focus and Beam Delivery System: The final focus system can be based on the CLIC design, with similar focusing requirements.

 Combining round-beam focusing together with the required chromaticity compensation presents a unique challenge

There are number of ideas on how to deal with accelerator design challenges. Strong physics case is needed to justify accelerator R&D efforts

SLAC

Various Physics Opportunities Enabled by this Novel Regime of Colliding Lepton Beams in the Presence of Extreme Fields

-SLAC

future multiple-TeV scale collider etc.)More details in talk by M. Tamburini

- Fully non-perturbative QED physics: developing framework for $\alpha \chi^{2/3} \gtrsim 1$ and what its potentially observable features More details in talk by A. Fedotov and A. Mironov
- Particle physics opportunities beyond standard model: (axions like particles, dark photons, milli-charged particles, etc.)
 More details in talk by S. Ellis
- Physics of e-e⁺ pair plasma that is created in these extreme background fields and its effects on the colliding beams
 More details in talk by L. O'Silva, D. Reis

Agenda (Wednesday, August 7):

Start Time	Title	Presenter	Affiliation
08:00 am	Workshop introduction, concept for a fully nonperturbative QED collider	Vitaly Yakimenko	SLAC
Session on	Introductory Quantum Field Theory		
08:30 am	Formalism for beamstrahlung in quantum regime	Michael Peskin	SLAC/Stanford University
09:15 am	Non-perturbative methods for strong-field physics	Gerald Dunne	University of Connecticut
10:00 am	Coffee		
10:15 am	Perturbation theory in strong field QED	Antonino Di Piazza	MPIK Heidelberg
Session on	Fully Nonperturbative QED		
11:00 am	The Ritus-Narozhny conjecture: history and re-summation of QED radiative corrections in a strong constant crossed field	Alexander Fedotov and Arseny Mironov	MEPhI
11:45 am	Photon emission probability beyond tree level: possible approaches and review of the literature	Sebastian Meuren	Princeton University
12:30 pm	Lunch		
01:30 pm	Nonperturbative calculations and open problems of QED in	Anton Ilderton	University of Plymouth
02:15 pm	Trident pair production and double Compton scattering in SF	Greger Torgrimsson	Helmholtz Institute Jena
03:00 pm	Coffee		
03:15 pm	Euler-Heisenberg effective action beyond leading order	Felix Karbstein	Helmholtz Institute Jena
Session on	Techniques and Applications in Other Fields		
04:00 pm	Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field	Igor Shovkovy	Arizona State University
05:30 pm	Reception		
V. Yakimenko, V	Vorkshop on Physics Opportunities at NpQED Collider, June 24-25, 2019		14

Agenda (Thursday, August 8):

Start Time	Title	Presenter	Affiliation
08:00 am	Potentially relevant techniques from QCD/Lattice	Lance Dixon	SLAC/Stanford University
08:45 am	Real-time evolution of lattice gauge theories in the classical- statistical regime	Valentin Kasper	Harvard University
09:30 am	Strong field effects in heavy ions collisions (critical magnetic	Kirill Tuchin	Iowa State University
10:15 am	Coffee		
10:30 am	Connection of strong field and fully nonperturbative QED physics to astrophysics and cosmology	Peter Meszaros	Penn State University
11:15 am	Non-Perturbative QED to go Beyond the Standard Model	Sebastian Ellis	SLAC/Stanford University
12:00 PM	Lunch		
Session on	Experimental Tests		
1:00 PM	Plans for strong field QED experiments around the world with high intensity laser	Alexander Thomas	University of Michigan
01:45 pm	Plans for strong field QED experiments at FACET-II	David Reis	SLAC/Stanford University
02:30 pm	Strong-field QED physics enabled by FELs	Claudio Pellegrini	SLAC
03:15 pm	Coffee		
Session on	Simulations		
03:30 pm	History and theory of beam-beam interactions in linear	Pisin Chen	National Taiwan University
04:15 pm	QED implementation and simulations with PIC codes	Luis O. Silva	Instituto Superior Tecnico
05:00 pm	Strong-field QED simulations beyond the local constant field approximation	Matteo Tamburini	MPIK Heidelberg

SLAC

Start Time	Panel discussion	Panel members
08:30 am	Questions towards theory and plasma physics: Which are the open questions about e+e- plasmas, SFQED calculations, especially related to non-perturbative effects, how well are simulations connect to the calculations, next questions to be answered?	Gereld Dunne Anton Ilderton Sebastian Meuren Luis O. Silva
10:00 am	Coffee	
10:15 am	Questions towards high-energy physics applications: What do we need to know to propose a gamma-gamma collider for a Higgs factory, how do we justify the strong-field physics that makes that possible, to what extend will scheduled experiments test that this physics is correct, is there a gap and what further experiments are needed to bridge it?	Claudio Pellegrini Michael Peskin Alexander Thomas Vitaly Yakimenko

The central goal is to identify steps towards complete quantitative understanding of radiation in extremely strong background fields and its application that will be adequate for a proposal for the dedicated facility

Workshop presentations and discussions will be summarized by the conveners Summary and submitted presentations will be available on the Website

Summary:

New capability	What is enabled
Tightly focussed and compressed high charge bunches	Extreme field in the laboratory frame
	Strong Field sector of QED: field of the bunch is probed by laser or x-rays beams
	Beyond standard model physics: search for dark sectors, i.e. dark photons and "millicharged particles"
	Plasma physics enabled by extreme densities of the charge particle beam
Beamstrahlung suppression with short bunches	Linear collider with round bunches, reduced beam power requirement, path to very high energies particle physics
	Ability to probe extreme fields while preserving initial energy
	Fully Non-perturbative QED physics
High energy electrons experience extreme field of opposite bunch	e+e- cascades, collective plasma-beam effects, astrophysics
	Beamstrahlung spectrum is peaked at full energy, path to γ/γ collider without laser backscattering, path to very high energies
	Beyond standard model physics (axion-like particles, dark sectors, etc.)