

Outline

- 1. X-ray beam parameters at NEH2.2.
- 2. Description of chemRIXS and qRIXS endstations.
- 3. Options for non-linear experiments.

NEH2.2. beamline

SLAC

NEH2.2. accepts X-rays from the Soft X-ray Undulator (SXU). Photon energy range 250 – 1600 eV.

Three beamline configurations:

- 1. Non-monochromatic (pink beam) mode.
 - No temporal pulse stretching.
 - Suitable for two-color X-ray experiments (co-linear).
- 2. Low-resolution monochromatic mode (LR).
 - Resolving power ~5000.
 - Temporal pulse stretching <50 fs (transform limit x2).
 - Three gratings for low-, mid- and high-energy (LE, ME, HE).
- 3. High-resolution monochromatic mode (HR).
 - Resolving power ~50000.
 - Temporal pulse stretching ~500 fs (transform limit x2).
 - Three gratings for low-, mid- and high-energy (LE, ME, HE).

NEH2.2. core capability is (linear) pump-probe experiments. -> Potential for non-linear experiments, particularly in the nonmonochromatic mode.

NEH2.2. beamline optical layout

- 6 mirrors + 1 grating (or mirror) in total.
- Mirror coating B_4C (<1000 eV), optionally Rh for the last 4 mirrors (>1000 eV).
- Horizontal and vertical focusing controlled with two KB mirrors.
- H/V spot size at the experiment can be adjusted between $2 1000 \mu m$.

X-ray parameters

Characteristic X-ray fluences at 500 eV with a small spot.

	After SXU Photon energy 500 eV				At the experiment Interaction Point Spot size 2 x 2 μm ²			
FEL Mode	Pulse energy (µJ)	Pulse length (fs)	Comment	BL mode	Pulse energy (µJ)	Pulse duration (fs)	Fluence (J/cm ²)	Peak fluence (TW/cm²)
SASE	2000	50	E/∆E = 200	Non-mono. LR (RP=5k) HR (RP=50k)	500 15 0.6	50 60 400	12500 375 15	250 6.25 0.0375
Seeded	50	20	E/∆E = 3500	Non-mono. LR (RP=5k) HR (RP=50k)	12.5 10 4	20 36 400	312.5 250 100	16 7.0 0.25
Single Slotted foil	15	2	Single SASE spike, Spike rate 20%	Non-mono.	4	2	100	50
XLEAP	20	0.5	∆E = 5 eV	Non-mono.	5	0.5	125	250
SASE Split Undulator	50 (per pulse)	30	Two pulses: Time sep. 0 – 800 fs, Energy sep. up to x2	Non-mono.	12.5	30	312.5	10
XLEAP Split Undulator	15 (per pulse)	0.5	Two pulses: Phase coherent <50 fs time separation	Non-mono.	4	0.5	90	190

FEL parameters taken from the Run 19 update (Oct. 1, 2020). More info: https://lcls.slac.stanford.edu/sites/lcls.slac.stanford.edu/files/LCLS-Parameters-Run-19.pdf

NEH2.2. endstations - hutch layout

chemRIXS endstation

Capabilities:

- In-vacuum liquid jets
- Pump laser infrastructure, colinear incoupling.
- Point detectors: APD and MCP, 1 MHz readout rate
- Downstream CCD for detecting a transmitted beam
- Grating spectrometer (RP~2000). Mounted at 90 deg scattering geometry in the horizontal plane or optionally in-line.
- Sample Viewing: on-axis & perpendicular; infrared illumination

chemRIXS: sheet and cylindrical jets

Gas accelerated sheet jets

- Thinnest sheets: 0.1 – 1 µm
- 250 µl/min flow rate

Converging nozzle sheet jets (not gas accelerated)

- Thickness: 0.2 2 μm
- 2 to 4 ml/min

LCLS SED website: https://lcls.slac.stanford.edu/sed

chemRIXS: Overlap Diagnostics and Point Detectors

- YAG for x-ray visualization
- Frosted YAG for laser
- Pinhole for wavefront sensor (WFS)
- Timing Crystals
- Knife edge blades
- Fast photodiode for coarse timing

Point detectors, MCP + APD

chemRIXS: X-ray emission VLS spectrometer

Standard configuration:

Mounted at 90 deg scattering geometry in the horizontal plane for fluorescence detection.

In-line option:

Can be mounted downstream of the endstation at 0 deg scattering geometry (in-line) in the horizontal plane.

Alternative detector: Large MCP + Phosphor screen + optical camera

SLAC

Larger acceptance, but RP ~500

qRIXS endstation

 Sample positioning and cooling

- Characterization: X-ray Absorption Spectroscopy, Resonant Elastic X-ray Scattering
 - Spectrometer arm (grating & detector) on a movable arm
 - Laser in-coupling for a wide range of wavelengths
- Diagnostics

qRIXS: sample chamber

Capabilities:

 Sample motion: 6 degrees of freedom: in-vacuum diffractometer

- UHV (<3 x 10⁻⁹ Torr)
- Cryostat: 20 K
- Long-wavelength laser incoupling
- In-vacuum detectors for peak finding and XAS in fluorescence yield mode

qRIXS: spectrometer arm

Capabilities:

- Scattering angle 40 150 deg: continuous rotation
- Reach RP of 50,000 & 1 keV
- Polarimeter
- Collaboration with BNL on the optical layout

1. Stimulated XES/RIXS (amplified spontaneous emission)

- Soft X-rays
- Solid sample

Beye et al., Nature 501, 191 (2013)

Liquid sample

Kroll et al., PRL 120, 133203 (2018)

- Amplification of low-yield fluorescence signals (superfluorescence).
- Suppression of non-radiative decay channels and electronic damage.
- Demonstrated chemical sensitivity.

2. Seeded (pump-dump) stimulated XES/RIXS

Kimberg and Rohringer, Struct. Dyn. 3, 034101 (2016)

- Liquid sample
- LCLS split undulator method

Kroll et al., PRL 125, 037404 (2020)

• Stimulation of "forbidden" or low cross-section core-transitions that have low yield in spontanaous XES/RIXS.

3. Impulsive X-ray Raman pump / laser probe or X-ray probe

• Soft X-rays

O'Neil et al., PRL 125, 073203 (2020)

- Gas phase
- Coherent broad-band (eVs) X-ray pump pulses
- LCLS XLEAP method
- Generation of localized valence electronic wavepacket allows probing of electronic dynamics and coupled nuclear dynamics.

4. 2D coherent core-hole correlation spectroscopy

- Correlated valence electronic states spanning different atomic sites
- τ_{pulse} < core-hole lifetime
- Δt_{12} < core-hole lifetime (few fs)
- Two-color ultrashort pulses (resonant with different atomic/chemical species)
- Energy separation (few 100s eV)
- FWM two colors are coupled by correlated valence states

Schweigert and Mukamel, PRL 99, 163001 (2007)

5. Co-linear two-color coherent X-ray Raman spectroscopy

- Scattering wavevector between the sites a and b: $q = 2\pi/(R_a - R_b) = k_2 - k_1 = k_{out} - k_2$
- Directly probes the coupling (transfer) of the valence excitation between the sites a and b

Tanaka and Mukamel, PRL 89, 043001 (2002)

SUPPLEMENTARY SLIDES

Resolving Power

Pulse length

Beamline Transmission – SASE mode

Including grating efficiency and source bandwidth (E/ Δ E @ source = 200). To have the power/pulse energy at qRIXS or chemRIXS, multiply the source power/energy by the numbers in this chart. Resolving power corresponding to the data on slide 20.

Beamline Transmission – Seeded mode

Including grating efficiency and source bandwidth ($E/\Delta E$ @ source = 5,000). To have the power/pulse energy at qRIXS or chemRIXS, multiply the source power/energy by the numbers in this chart. Resolving power corresponding to the data on slide 20.

Zero order transmission (After M4K2)

SLAC

White: All mirrors using B_4C coating Red: M1K1, M2K1 and M3K1 using B4C; M1K2, M2K2, M3K2 and M4K2 using Rh₂₄

Geometrical Spot in the experimental chamber

