TMO @ LCLS II Overview, Capabilities & Plans for TMO

Peter Walter

Non-Linear Multidimensional Methodologies for Studying Chemical Sciences

Acknowledgement

The AMO / TMO Team:

Christoph Bostedt - PSI, ETH Zurich Reinhard Dörner - Frankfurt Gilles Doumy – Argonne Oliver Gessner - LBNL - CSD Markus Guehr - U. Potsdam Daniel Rolles - KSU Thorsten Weber - LBNL - CSD Nora Berrah - U. Conn Adrian Cavalieri - PSI Jon Marangos - ICL Artem Rudenko - KSU

TMO Science Motivation, SLAC

"From attosecond charge migration involving electronic dynamics and correlation to femtosecond charge transfer involving nuclear rearrangement"

Attosecond Electron Dynamics

Electron motion is responsible for all chemistry
Our goal is to track the evolution of electrons on their natural time scales
We want to determine what role attosecond scale electronic coherence has on longer timescale, femtosecond motion (Chemistry).

Environmental Molecular Sciences Laboratory (EMSL) @ PNNL: https://www.youtube.com/watch?v=ZYsktRlhMOg J. Chem. Theory Comput. **7**, 1344–1355 (2011)

 $t = 0.3 \, \text{fs}$

Kuleff at al. 2016

Important for all photo-induced processes in chemistry and biology like energy conversion and storage, but also photosynthesis, metabolism, oxidation, reduction and light driven charge transfer and charge injection in materials

AMO Science Motivation, Community

Basic Energy Sciences Roundtable

Opportunities for Basic Research at the Frontiers of XFEL Ultrafast Science

OPEN ACCESS

IOP Publishing

Journal of Physics B: Atomic, Molecular and Optical Physics

J. Phys. B: At. Mol. Opt. Phys. 51 (2018) 032003 (45pp)

https://doi.org/10.1088/1361-6455/aa9735

MDPI

Roadmap

Roadmap of ultrafast x-ray atomic and molecular physics

Linda Young^{1,2,22}, Kiyoshi Ueda³, Markus Gühr^{4,5}, Philip H Bucksbaum^{5,6}, Marc Simon⁷, Shaul Mukamel⁸, Nina Rohringer^{9,10}, Kevin C Prince¹¹, Claudio Masciovecchio¹¹, Michael Meyer¹², Artem Rudenko¹³, Daniel Rolles¹³, Christoph Bostedt¹, Matthias Fuchs^{5,14}, David A Reis⁵, Robin Santra^{9,10}, Henry Kapteyn^{15,16}, Margaret Murnane^{15,16}, Heide Ibrahim¹⁷, François Légaré¹⁷, Marc Vrakking¹⁸, Marcus Isinger¹⁹, David Kroon¹⁹, Mathieu Gisselbrecht¹⁹, Anne L'Huillier¹⁹, Hans Jakob Wörner²⁰, and Stephen R Leone²¹

Review Ultrashort Free-Electron Laser X-ray Pulses

Wolfram Helml ^{1,2}, Ivanka Grguraš ³, Pavle N. Juranić ⁴, Stefan Düsterer ⁵, Tommaso Mazza ⁶, Andreas R. Maier ⁷, Nick Hartmann ⁸, Markus Ilchen ⁶, Gregor Hartmann ⁹, Luc Patthey ⁴, Carlo Callegari ¹⁰, John T. Costello ¹¹, Michael Meyer ⁶, Ryan N. Coffee ¹², Adrian L. Cavalieri ³ and Reinhard Kienberger ^{2,*}

Key questions this PRO will answer:

- How does electronic charge move from atom to atom in a molecular system?
- How do electron-electron interactions and correlations alter this motion?
- How do the atoms rearrange following this electronic motion and, conversely, how does this atomic motion affect the coherent electronic motion?
- Can this coupled and correlated electronic motion be exploited to affect longertimescale dynamics?

Contents

- 1. Introduction
- 2. Ultrafast molecular dynamics
- 3. Multidimensional x-ray spectroscopies
- 4. High-intensity x-ray phenomena
- 5. Attosecond science with table-top sources

Development of ultrafast
capabilities for X-rayIfree-electron lasers at the linac
coherent light sourcePHILOSOPHICAL
TRANSACTIONS A

Ryan N. Coffee^{1,2}, James P. Cryan^{1,2}, Joseph Duris³,

Wolfram Helml^{4,5}, Siqi Li^{3,6} and Agostino Marinelli³

4

L2S-I Hutches

- The L2S-I scope includes: •
 - 3 new instruments (5 endstations) •
 - X-ray optics, diagnostics, detectors, controls •
 - A central high-power optical laser complex ۲
 - A high throughput data complex •

Program is focused on ensuring first two instruments (NEH 1.1, NEH 2.2) are delivered on time for LCLS-II operations

SLAC

NEH 1.1

- **High Flux Soft** X-ray
- 250 2000 eV
- <1 µm / <0.3 µm
- **Minimal Optics**

TMO, NAMASTE (IP1) and DREAM (IP2) Endstations

The new designed **T**ime-resolved Atomic, **M**olecular and **O**ptical Science end station (TMO), will be configured to take full advantage of both the high per pulse energy from the copper accelerator (120 Hz) as well as high average intensity and high repetition rate (1 MHz) from the superconducting accelerator. TMO will support many experimental techniques not currently available at LCLS and will locate two experimental endstations. Thereby, TMO will support AMO science, strong-field and nonlinear science and a new dynamic reaction microscope.

CuRF + SXU

CuRF (LCLS I) + Soft X-ray Variable Gap Undulators

Experimental Technique with CuRF FEL source (high FEL Pulse Energy, low Rep Rate)	FEL Pulse Duration	Rep Rate	Pulse Energy¹	Average Power	Photon Energy Range
NAMSTE : Strong field charged multi-hit / multi-particle spectroscopy, ARPES (TOF, VMI)	0.5 - 100 fs	120 Hz	> 5 mJ	1.5 W	250-2000 eV
DREAM : Coincidence charged particle spectroscopy	< 100fs	120 Hz	> 0.2 mJ	> 0.2 W	250-1500 eV

Attosecond XFEL - A New Regime

Pulse energy (uj)

Pulse energy (uJ)

Long Term Key Requirements, TMO

SLAC

Beamline Requirements

Focus spot < $1\mu m$ (HxV)

High repetition rate (>100kHz)

Sub femto second pulses to few femto second pulses

Thru Zero Delay Scans

High Intensity Pulses (>5mJ)

X-ray Energy 250 - 2000 eV

Polarization Control

Automation

Detector/ Experiment Requirements

High resolution e⁻-Detector

High resolution ion Detector

Large TOF window (>100eV)

Position and Time resolution (delay-line)

Gas phase ARPES capability

Diagnostics

Attosecond capability

Focus Optimization (WFS in-situ)

<10 fs rms timing resolution

Optical Laser, TMO

-SLAC

Laser specs		NAMASTE	DREAM
	Turn-on date	4/2020	10/2021
OFOFA	Mid-IR	Х	(x)
Short focus in-coupling	NIR	Х	(x)
Colinear in-coupling	800	Х	Х
Connour in ocupining	400	Х	Х
>10 mJ/cm ² fluence	266	Х	Х
>100 kHz, <100 fs	200	(x)	(x)
	< 20 fs	(x)	(x)
<10 fs rms timing resolution			
1-5 J/cm2, <10 fs pulses for strong-field experiments			

TMO optical LASER (800 – 266)

TMO Priority: Shorter > rep rate > tuneability > pulse energy

	IP1	IP2
800 nm		
duration	<20 fs	<20 fs
Energy	200 uJ [50 um]	130 uJ
Spot Size (diameter)	20-50 um	< 10 um
Intensity/Fluence	few 10^14 W/cm^2	10^15 W/cm^2
Rep. Rate (kHz)	100 kHz	100 kHz
Harmonics (400/266)		
duration	<10 fs	<10 fs
Pulse Energy	2.5 uJ (50 um dia)	0.5 uJ
Spot Size	20-50 um	< 10 um
Fluence	> 100 mJ/cm^2	500 mJ/cm^2 10^13 W/cm^2
Rep. Rate	100 kHz	100 kHz

TMO optical LASER (>800 - MIR)

TMO Priority: Shorter > rep rate > tuneability > pulse energy

	IP1	IP2
Tunable IR (1300-2400)		
duration	<25 fs	<25 fs
Pulse Energy	140 uJ [100 um]	60 uJ
Spot Size (diameter)	20-100 um	< 50 um
Fluence	10^14 W/cm^2	10^14 W/cm^2
Rep. Rate	100 kHz	100 kHz
Tunable MIR (2400-17000)		
duration	< 100 fs	
Pulse Energy	flexible	
Spot Size	flexible	
Fluence	> 5*10^12 W/cm^2	
Rep. Rate	100 kHz	

Sample Delivery

JET	Operation Mode
Cryo CW Jet	continuous
Even-Lavie	pulsed
Parker Valve	pulsed

Cryo Jet Option	Parameter
Cooling	L-He and L-N2
Temperature range	5 – 650K
Nozzle	2x
Nozzle size	20-200µm (variable)

-SLAC

Beamline vacuum profile NEH1.1

1.E-12

IP 1, KB System (NAMASTE)

Mirrors decoupled from the chambers. Benders with in-vacuum motors

IP 2, KB System (DREAM, no bender)

Optics, Transmission (incl. M1K4)

TMO, Diagnostic and WFS

TMO, **Diagnostic**

MRCOFEE

Diagnostic		
Polarization		
Pulse duration		
SASE profile		
Rel. Energy, Intensity		
Beam position		

BPM & Power Meter (1Hz)

TMO, NAMASTE Endstations (IP1)

SLAC

Next generation **A**tomic, **M**olecular, and **A**ccelerator **S**cience and **T**echnology **E**xperiments (NAMASTE). The NEH 1.1. instrument will offer the possibility to install modular stations (roll in and out) which can be set up, aligned and commissioned outside the hutch and installed at the first TMO focus spot. Therefore, these modules have to be highly standardized by the following parameters. The implementation time needs to be less than 12h (desired 8h) within a reasonable low amount of SLAC manpower (plug and play).

NAMASTE: Roll-in Endstaions

SLAC

These roll-in Endstation will be highly standardized. The implementation time needs to be less than 12h (desired 8h) within a reasonable low amount of SLAC manpower (plug and play).

NAMASTE Option: LAMP

Osipov, T., Berrah, N., et. al. (2018). 035112. https://doi.org/10.1063/1.5017727

Science / Technique	LAMP (OSIPOV VMI)	
DAY ONE	X	
Strong field	Х	
lon / e ⁻ covariance	Х	
XAS	Х	

NAMASTE Option: Co-Ax-VMI

NAMASTE Option: MRCOFFEE

Multi Resolution Cookiebox Optimized for Future Free Electron Laser Experiments

Science / Technique	MRCOFFEE	Specifications	Diagnostic
DAY ONE		0.25 eV / 70 eV	Polarization
High rep rate (1MHz)	Х	1.5 - 5° Accept. Angle	Pulse duration
High res PES	Х	/ TOF	SASE profile
ARPES	Х	> 2000 V retardation	Rel. Energy, Inensity
Multiple edge ARPES	Х	> 2 ret. settings	Beam position

Common Components in-coupling in non-collinear geometry and non-standard close in-coupling

IP1: Optical layout incorporates separate paths for three wavelength ranges, to size beams appropriately SLAC ST1XY-S on MS1S stan LM2XY E ST Mid IR 4.5 x telesco + 1000 mm focusing mirror STT-50.8 **Configuration 1:** VMI Telescop +600 mm len on Thor C2G 800-2400 nm Gold optics Fixed CaF₂ telescope for NIR Final CaF₂ focusing optic Enters through close in-coupling 29

IP1: Optical layout incorporates separate paths for three wavelength ranges, to size beams appropriately SLAC

NIR 13 1 Mesope Mid IR 4.5 Mesope

VMI

31

+600 mm lens

UV-800 nm

- UV-enhanced aluminum optics
- Fixed magnification reflective telescope
- Reflective, parabolic final focusing optic
- Enters through far in-coupling

TMO, DREAM Endstation (IP2)

The new **D**ynamic **REA**ction **M**icroscope (DREAM) endstation will house a well-defined geometry and COLTRIMS type spectrometer as a standard configuration to accommodate extreme vacuum, sub-micron focus spot size, and target purity requirements dictated by the pump-probe class of coincidence experiments, while accumulating data on the event-by-event basis at the rep rates in excess of 100 kHz fully utilizing the LCLS-II capabilities. Photon fluence in DREAM will reach over 10²¹ photons/cm² with superconducting Linac X-rays

DREAM station

Main components and specs

- Experimental chamber
- Multistage differential pumping + gas jet and jet catcher
- 0.5 mm gas jet ϕ
- 1.5 m Jet source distance
- COLTRIM eTOF, and iTOF spectrometers
- Laser in/out-coupling
- Earth magnetic field cancellation coils (yaw and roll)

Laser in/out

coupling '

- 6 DOF (manual) support with motorized Y
- Diagnostic paddle
- Long-range microscope
- ≤ 300 nm X-ray spot
- 5 μm Laser spot
- 0.5 μm overlap

Spectrometer

• Notches are included for laser path and diagnostic paddle

-SLAC

DREAM Spectrometer and Detector

DREAM

Hexanodes: 2x 120mm

Inner diameter: 125mm

Variable Spectrometer length

Max Voltage: 10 kV

Pt or dendritic Copper coated plates

e⁻ Resolution: dE/E ~1%

Collection efficiency: Ions> 50eV, e⁻ >200eV

Max B-Field: 35 Gauss

Detector time resolution: ~ 0.3 ns

Detector position resolution: ~ 250 µm

DREAM optical layout incorporates two configurations: one for 800nm, and one for harmonics

Non-standard in- and out- coupling to achieve small focal spot and provide online diagnostics of laser

-SLAC

Laser optics in the chamber

- 110mm focal length, holey, glass, 90° parabola with 33mm clear aperture
- Mounted on 6 D.o.F. nonmagnetic, UHVcompatible 'hexapod'
- Additional holey mirror to send laser out of chamber through lens to re-image to diagnostics

Diagnostics at output to provide information on laser parameters at the interaction point

Wavefront measurement

Risk: Maintaining spatial overlap of 800nm with X-rays will be very challenging. Potential need for veto on spatial overlap. Diagnostics key to managing this.

TIXEL: Time Resolving Imaging Detector for LCLS II

•	Back end compatible with
	ePix family interface

	Tixel
Matrix size	192 x 176
Readout BW	8 Gbps
Links	x8 LVDS
Encoding	10/12b
Bits / event	40
Readout full- frame	202 µs
Max chip hit rate	165 Mhits/s
Max hit rate area	49 Mhit/s/cm ²
Camera x16 ICs	2640 Mhits/s

TMO – the new standard of charged particle spectroscopy SLAC

L2SI – Schedule (Instruments ready for X-rays)

	Task	Date
CuRF	TMO: IP1 (LAMP, cVMI, MPES)	10/2020
CuRF	RIX (ChemRIX)	12/2020
CuRF	RIX (SurfSpec)	08/2021
CuRF	RIX (qRIX)	01/2022
CuRF	RIX (k-microscope)	01/2022
CuRF	TMO: IP1 (MRCOFFEE)	02/2022
CuRF	TMO: IP2 (DREAM)	03/2022
SCRF	RIX (qRIX)	07/2022
SCRF	TMO: IP2 (DREAM)	07/2022
SCRF	TMO: IP1 (MRCOFFEE)	07/2022
SCRF	RIX (k-microscope)	09/2022
SCRF	RIX (SurfSpec)	12/2022
SCRF	TXI	01/2023

Future Scientific Impact of TMO

From charge migration, EWP and correlation to fs charge transfer involving nuclear rearrangement

