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Outline

• Introduction to Generative Adversarial Networks 

• Learning to produce calorimeter showers 

• Concluding remarks



Adversarial Deep Learning

• What is an adversary? Best to think about context of 
games 

• As we design our “game,” we have a goal in mind 
for it’s outcome 

• We can pit multiple players (usually neural networks) 
against each other with cost functions to minimize/
maximize while playing, usually want to characterize 
emergent behavior / convergence of such a game



Generative Adversarial Networks (GAN)

tries to tell fake/real

Turn generative modeling into a  
two player, non-cooperative game.

tries to produce real looking samples



Setting up the Classical GAN system

• First term, probability that a real sample is classified 
as real 

• Second term, probability that a fake sample is 
classified as fake 

• Generator wants to minimize this, discriminator 
wants to maximize this



GANs in HEP

• Ultimate goal: quickly and accurately simulate 
particles interacting with individual detector 
components - speed up slow simulation 

• Intermediary goal: can we speed up calorimeter 
simulation, which is the current bottleneck? 

• First step: can we learn to generate jet images 
using a Generative Adversarial Network?



LAGAN
arXiv:1701.05927



Jet Images: Particle Physics $ Computer Vision

• Now quite ubiquitous: unroll a detector to  
treat depositions like an image 

• For a more detailed explanation and related links, see 
Benjamin Nachman’s talk from ACAT 2017 

• Jet image: 2D representation of the radiation pattern 
within a jet

A jet image Average over thousands 
 of jet images

https://indico.cern.ch/event/567550/contributions/2656471/


Qualitative Assessment

5 random Jet Images

nearest LAGAN-generated 
neighbor

GAN-generated 
signal - background

Real signal - background



Checking Physical Properties

n-subjettiness jet mass



CALOGAN
arXiv:1705.02355, arXiv:1712.10321, arXiv:1711.08813 



Calorimeter Images

• Challenges: 

- spatio-temporal 
dependence 

- sparsity 

- dynamic range 

- location specificity 

• Advantages: 

- compositionality 

- quantifiable 
properties

3x96

12x12

12x6

• Closer and closer to raw detector output (e+, π+, y) 
• Goal: obtain simulation speedups with GAN

arXiv:1705.02355



Open Dataset of Calo Images

• 3 layer, heterogeneous segmentation and resolution 
(designed to approximate ATLAS LAr calorimeter)  

• 3 types of particle: e+, π+, y 

• Variable position and angle of incidence (5cm in x and y; 
0˚, 5˚ and 20˚ in theta and phi) 

• Open, available, re-usable, citable

https://zenodo.org/record/846388#.WZskq5OGORs


Model Requirements

• Obey (to an approximation) conservation of energy and 
other physical traits such as sparsity 

• Allow conditioning on physical attributes (incident angle, 
energy, etc.) 

• Model sequential relationship through layers



CaloGAN Architecture

Generator

Discriminator

arXiv:1705.02355



CaloGAN Architecture

Generator

Discriminator

Attentional Component

arXiv:1705.02355



CaloGAN Architecture

Generator

Discriminator

Attentional Component

Conditioning

arXiv:1705.02355



Performance at Calo Level

arXiv:1711.08813 
arXiv:1705.02355 

N.B., We also compare using shower shapes (see backup)



Computational Speed-up

Up to a 105 speed-up 
compared to GEANT4!

arXiv:1705.02355

• Since a GAN can be expressed using linear algebra 
primatives, can exploit modern computing platforms (such 
as GPU) and libraries (such as TensorFlow) 

• With large batches, generation time per-particle decreases 
dramatically

N.B., See backup for benchmarking parameters



Concluding Remarks

• GANs have shown promise in learning complicated, high dimensional 
physical realizations 

• GANs are extensible, and can easily incorporate domain constraints 

• Speed-up from GANs compared to traditional modeling is promising 

• Achievements so far using basic GAN formulation! Doesn’t include 
recent work on ProgressiveGANs or Spectral Normalization - can only 
get better!

arxiv:1802.05957 arxiv:1710.10196 



Thanks!



Backup



Attribute Conditioning



Verification with 1D projections

Physical one-
dimensional 
statistics of the 
shower 
probability 
distribution can 
help us verify how 
well our surrogate 
performs



Attribute Regression

As a 
byproduct, 
the 
CaloGAN 
learns to 
regress out 
initial 
conditions



Benchmarking Parameters

• Numerical results are obtained over an average of 100 runs. 

• Geant4 and CaloGAN on CPU are benchmarked on nearly 
identical compute-nodes on the PDSF distributed cluster at 
the National Energy Research Scientific Computing Center 
(NERSC). 

• CaloGAN on GPU hardware is benchmarked on an Amazon 
Web Service (AWS) p2.8xlarge instance, where a single 
NVIDIA® K80 is used for the purposes of benchmarking.


