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In situ & operando hard X-rays characterization s

SAXS + deconstruction of polymers (upcycling)

Tl

SAXS + synthesis to optimize atomically
precises catalysts

Chemical

70

7 Theme: Multimodal & operando

qlA"]

jovskite PV

Fong et al. J. Chem.

XRD + synthe Batteries as example case

(a) Autocatalytic
nitiation
* Pbl2 in DMF
e PbCI2 + MAI
e Pbl2 + MAI
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Dighe et al, JACS Au, 2, 2, 453-462 (2022)

Stone et al., Nat. Commun. 9, 3458 (2018). Thampy & Stone, Inorg. Chem. 49, 18, 13364 (2020).
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Motivation: Green energy needs green storage Ay

Energy storage using Li-ion battery was driven by consumer electronics
Now dominated by EVs (& grid in the future)
EVs & stationary storage require better batteries

Higher demand requires greener batteries

Annual lithium-ion battery demand by application

GRAND CHALLENGE
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43 How can batteries hold more charge?

How can they last longer?

2 How can we use “greener”, cheaper materials? ., == = [ -

GWh/year
B
. : [N
H]
S nN
P
o

%Y
LQ How can we I’eCyC|e them? Bloomberg New Energy Finance



Need to understand batteries at many length scales N

» Batteries operate (and fail) at many length scales
* Need to characterize batteries across the whole range of length scales

* Need to characterize the system in action (when possible) mm - um
L — ] 1 nm ]

43 Hold more charge

Last longer

& Greener & cheaper

L?.'\ Recyclable

Preefer et al., J. Phys. Chem. C 2022, 126, 50, 21196-21204. pm
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Need characterization across length scales
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Tanim, Paul, et al. Cell Reports Physical Sciences, 1:7, 100114 (2020).
Nelson Weker et al. Electrochimica Acta 247, 977-982 (2017).
Nelson Weker et al. Energy & Environmental Science 2014, 7, 2771-2777.
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Preefer et al. in preparation diffraction during extreme fast cycling



Multimodal operando X-ray characterization suite at SSRL .-

Identical cycling on & off the beamline’
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Cross platform pouch cell design
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Basic science to industry relevant problems 7
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‘I Accelerating basic scientific understanding and battery commercialization
APPLIED
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3 vignettes of multimodal, operando characterization -
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Zn batteries cathode Li metal mapping Mg-S cathode dissolution

P~ j’r“

MogNDb 14044 8



Multivalent (MV) energy storage: 2 electrons perion! -

5%

* MV metal anode support high volumetric capacity
» 2 electrons per metal ion!
* Zn has highest

« Can use aqueous electrolyte (safer & cheaper)

« Need cathode material to reversibly intercalate Zn2*

Standard Specific Volumetric lonic Hvdrated lonic
Element Potential Capacity Capacity Radius yR dius (A
(vs.SHE)  (mAhg)  (mAhcm?) (A) adius (A)
Li -3.04 3860 2061 0.76 3.40-3.82
Mg -2.36 2206 3834 0.72 3.00-4.70
Ca -2.84 1337 2072 1.00 412-4.20

JCEQ JOINT CENTER FOR
N ENERGY STORAGE RESEARCH Zn -0.76 820 5855 0.75 4.04 —4.30




NASICON Na,V,(PO,); — Potential cathode for Zn%*

Goal: Can we get 2x the storage by inserting Zn2* instead of Na*?

Na;Vy(POy); NaV,(PO,); (?)NaV;(PO,);

2

6b site — Na1 6b site — Na1 Can Zn?* occupy T,
18e site — Na2 18e site — empty empty 18e sites?  Jesse S.-W. Ko

NASICON = Na Super lonic CONductor

JOINT CENTER FOR
JCES ENERGY STORAGE RESEARCH 10
Ko et al., Chemistry of Materials 32, 7, 3028-3035 (2020).



Qualitative changes with operando X-ray diffraction
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11
Ko et al., Chemistry of Materials 32, 7, 3028-3035 (2020).



Both Na* & Zn?* insertion with discharge to 1.2 V N
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1.8 1

NaVy(POy); NasVy(POy)s  Zng,sNaVy(POy);
34 92% 42.27% 22.81%
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Voltage (V vs. Zn/Zn?*)

iii) discharge to 1.2~ —C/20

1.0 -

0.8 -
' 6b site — Na1 6b site — Na1 6b site — Na1
0.6 - 18e site —empty 18e site —Na2 18e site — Zn
6 | 5|0 | 160 | 1£|'>O | 2(|)0 | 2é0 | 300 Na1occ: 1.0 Na1 occ: 0.87 Na1 occ: 1.0
Specific Capacity (mAh gylp) Na2 occ: 0.72  Zn occ: 0.12
12

Ko et al., Chemistry of Materials 32, 7, 3028-3035 (2020).



Both Na* & Zn?* (& H*) insertion with discharge to 0.6 V. .-

59§\,
18- Na;Va(POy); Zn2sNaVa(POg)s
e 57.38% 42.64%
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0.6 _ iv) discharge to 0.6 V
U ' ' T 6b site — Na1 6b site — Na1
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Specific Capacity (mAh gylp)

Na1 occ: 0.87 1.0
Ko et al., Chemistry of Materials 32, 7, 3028-3035 (2020). Na2 occ: 0.72 /nocc:012) 13



Ex situ X-ray diffraction: Summary N g

Phase Fraction (%)
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B Na,V,(PO,);
B Zn NaV,(PO,),
B NaVv,(PO,);

42.6 %

Discharge to 1.2 V

* Results in three phases (NaVy(PO,)s,
N83V2(PO4)3, and ZnXNaV2(PO4)3)

* Unreacted NaV,(POy,); still presentat 1.2 V
Discharge to 0.6 V

« Two phases present (Naz;V,(PO,4); and
ZnyNaV(POy,);)

« Zn occupancy in Zn,NaV,(PQO,)3) only 12%

H* insertion into Zn site!

14



Fast charging: >15 min charging (>4C) N

50
« How do we design batteries that also work well for fast charging? |
« Li metal plating can dominate degradation & reduce capacity with loss of inventory

« Can we quantify Li plating and connect to capacity loss?

Li visibly plated onto graphite anode
10 min charging 15 min charging

ELECTROLYTE

Dead Li
(Irreversibly Plated)

. Active Li
Dead Li (Reversibly Plated)
(Inactive SEI)

XCEL

eXtreme Fast Charge Cell Evaluation
of Lithium-ion Batteries

I . 5

Paul, et al., Advanced Energy Materials, 2100372 (2021).



X-ray diffraction to map Li plating

5%
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Correlate spatial distribution of all crystalline phases: Li metal, graphite staging,
cathode (LiNio_5Mno_3COo_202 = NMC)
Performed in situ (non-distructive)

More quantitative than visual inspection Paul, et al. Energy & Environmental Science, 14, 4979-4988 (2021). 16



Mapped Li plating in 7 cells: 3 different charge rates

15-min. charging 10-min. charging
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Paul, et al. Energy & Environmental Science, 14, 4979-4988 (2021).

<10-min. charging




Now we can do this work at SSRL’s BL17!

New beamline 17

strong peak Spatial map of species

‘ n over pouch cell

Q (diffracting vector)

'
:
Y
Intensity

X-Ray In medium peak
------ ” /-/\
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Pouch Cell
> weak peak
Do e <

Area detector

Paul, et al. Energy & Environmental Science, 14, 4979-4988 (2021).

* Undulator beamline

» 6-circle diffractometer

KB optics: 10 um x 20 pm spot
e 5-20keV 18

Enables in situ X-ray diffraction mapping




Magnesium sulfate cathode

59
Mg metal anode & S composite cathode
- Very high energy densities (beyond limit of Li-ion) m:Ra.ta

« S, Mg: inexpensive and abundant
« Mg metal doesn’t form dendrites

» A‘ - Mn Fe Co Ni Cu 2Zn
N # N Pd cd

Proposed reaction pathway:
Sg — MgS4 — MgSQ — I\/IgS

Battery architecture:
» Mg metal anode

Abundance in the Universe (%)

= S/C composite cathode
Yuan et al. Sci. Adv., 6, 10 (2020). http://periodictable.com/



Operando imaging to understand irreversibility N Py

I

“A

Mg | MgCI,/EnPS =1/8 | S

INNOVATOR IN ELECTRONICS Charge

I=0.2mA

Discharge
/=0.1 mA

Voltage (V)

* Mg: alternative to Li metal
« Sulfur is an inexpensive
cathode material

27:mAh/g

425 mAh/g L 550 mAh/g . 780 mAh/g

142 mAh/g 317 mAh/g

» Nearly all sulfur particles disappear during first discharge plateau
* No particles reappear at charge - remaining particles are inactive

* Irreversible morphology change

Elizabeth Milleg

Nakayama et al. Chemistry of Materials, 30(18), 6318-6324 (2018).



Looking closer at one particle’s behavior

0 — 200 mAh/qg: Particle expands slightly
Mg + Sg - MgSS

200 — ~350 mAh/g: Particle dissolves rapidly
Mg+MgSg 2 2MgS,

"?o mAh/g ?1”“‘

INNOVATOR IN ELECTRONICS

425 mAh/g 367 mAh/g

Nakayama et al. Chemistry of Materials, 30(18), 6318-6324 (2018).

2k

Voltage (V)

[ Mg | MgCI,/EnPS = 1/8 | S

Discharge
/=0.1mA

317 mAh/g

500
Capacity (mAh/g)

250 mAh/g




Pushing operando and multimodal into the future sl

ith/Bronze PhasesT: Class of A A
it cycle very fast (1 min/charge) &%, & '

. >0
2

= 100

1000

5000

80

Mo3Nb 14044

« BL 17 can capture fast structural changes

« Lattice expansion and contraction primarily
along the c-axis
« Amount of lattice changes correlates with

capacity being stored (faster charging stores

less charge)

3
3

1.8 2.0 22 2.4 22
ala Unpublished results by Preefer et al. TJ. Am. Chem. Soc. 2016, 138, 28, 8888—-8899
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XAS at BL 9-3 in continuous scanning mode
Collected up to 20C (3 min charge/discharge)

90 s sweep per edge, Nb and Mo K-edges swept in
SUCCGSSion (pseUdO-SimUItaneOUSIy) Unpublished results by Preefer et al.

C/5 cycling rate
(5 hr charge/discharge)

5 10 15
X in LiXMO3Nb14O44

SSRL
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Discharge chemistry not reversable

SSRL

Fraction of Basis
I = o I o ° o =
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—"“dlscharge ;rge( dscharge)ge\dscharge

20000

40000 60000

Time (s)

80000 100000

Unpublished results by Preefer et al.

—— o (Nb initial state)
—— B (Nb 1st discharge)
a+B

—— Yy (Mo initial state)
—— & (Mo 1st discharge)

5%

Linear combination using initial
state (before current is applied)
and 1st discharge

Mo and Nb reduce/oxidize
simultaneously

But Mo reduces/oxidizes earlier

& faster
Irreversibility upon charge, and
to a greater extent in Mo

Data processing & fits using catXAS 24



Multimodal, operando X-ray characterization

58
Zn batteries cathode

Li metal mapping

Mg-S cathode dissolution
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