

The SSRL Structural Biology Program & SSRL and the Early SPEAR3 Era

SSRL 50th Anniversary Celebration

Keith Hodgson
April 20, 2023

Stanford
University

Outline of Presentation

- The SSRL Structural Molecular Biology Program
 - Early science – building the foundations
 - Innovations in instrumentation and beam lines
 - Scientific discovery
- SSRL and the Early SPEAR3 Era
 - SPEAR3 – realizing funding and delivering the project
 - And in parallel – building the foundations for LCLS

SSRL SMB Program – a Brief Chronology and Key Milestones

- Macromolecular crystallography and EXAFS applications over 1974-1980
- First NIH funding from NIH NCRR began with a Research Resource Grant (P41) in 1980
- Program scope (added SAXS) and user base expanded, and DOE OHER (now BER) funding began in 1993
- Since 1993, managed and operated as an integrated center for structural biology with primary funding from NIH and BER augmented by private and corporate investments
- In 2023, NIH (from NIGMS) and BER support continues with planning ongoing for the next 5 years of the program

Foundations of the SSRL SMB Program – Early Science – Macromolecular Crystallography

- Earliest applications of synchrotron radiation to study biological structure were fiber diffraction studies by Holmes and Rosenbaum at DESY (first images in the summer of 1970)
- One of SSRL's first 5 experimental stations, BL1-4, was built by Caltech and SSRL for fiber diffraction. My group modified the BL1-4 instrument for crystal diffraction studies during 1974-75
- Subsequently, there were experiments involving anomalous scattering – including by my group, David and Lilo Templeton, and Wayne Hendrickson and collaborators

Foundations of the SSRL SMB Program – Early Science – Macromolecular Crystallography on BL1-4

Reprinted from
Proc. Nat. Acad. Sci. USA
Vol. 73, No. 1, pp. 128-132, January 1976
Biophysics

1974-75

Applications of synchrotron radiation to protein crystallography: Preliminary results

(x-ray diffraction/anomalous dispersion/rubredoxin/azurin/nerve growth factor/glutaminase-asparaginase)

JAMES C. PHILLIPS, ALEXANDER WLODAWER, MARGUERITE M. YEVITZ, AND KEITH O. HODGSON*

Department of Chemistry and Stanford Synchrotron Radiation Project, Stanford University, Stanford, California 94305

Communicated by Richard H. Holm, October 23, 1975

FIG. 3. Cone-axis oscillation photographs of the same azurin crystal. Precession angle 6.5°, oscillation angle 20°. (left) Synchrotron source, $E = 3.7$ GeV, $I = 40$ mA, only electrons present, $\lambda = 1.740$ Å, exposure time 10 min. (right) Philips fine-focus sealed Cu anode tube, operated at 40 kV, 30 mA, exposure time 6 hr, Ni filter.

- Measured with much shorter data collection times - 60x < fine focus x-ray tube
- Demonstrated successful use of smaller crystals
- Observed anomalous scattering effects at Fe (rubredoxin) and measured effects of good collimation
- Reported striking observation that higher intensity of SR offered significant advantages with regard to recording higher quality data to higher resolution

Foundations of the SSRL SMB Program – Early Science – Macromolecules

Reprinted from
Proc. Nat. Acad. Sci. USA
Vol. 73, No. 1, pp. 128–132, January 1976
Biophysics

Applications of synchrotron radiation to macromolecules Preliminary results

(x-ray diffraction/anomalous dispersion)

JAMES C. PHILLIPS, ALEXANDER D. STUSS, and RICHARD H. HOLM

Department of Chemistry and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, California 94309

Communicated by Richard H. Holm, October 19, 1975

FIG. 3. Cone-axis oscillation photograph of a protein molecule. The source, $E = 3.7$ GeV, $I = 40$ mA, only electrons were used. The electron gun was operated at 40 kV, 30 mA, exposure time 6 hr.

for data collection
in a glass tube

use of smaller

scattering effects
and measured effects

observation that higher
resolution is significant
and to recording
higher resolution

Foundations of the SSRL SMB Program – Early Science – Macromolecular Crystallography on BL1-4

Reprinted from
Proc. Nat. Acad. Sci. U
S A, Vol. 73, No. 1, pp. 128
Biophysics

Applications Preliminary

(x-ray diffraction)

JAMES C. PHILLIPS
Department of Chemistry
Communicated by R. B.

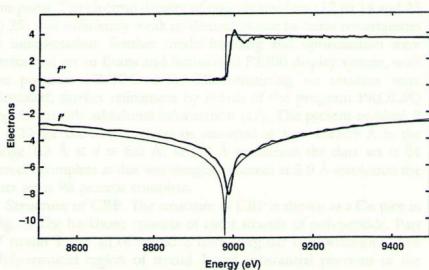
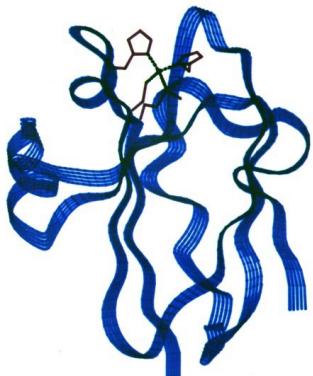
FIG. 3. Cone-axis oscillations of a protein crystal at the SSRL source, $E = 3.7$ GeV, $I = 40$ mA, operated at 40 kV, 30 mA, e

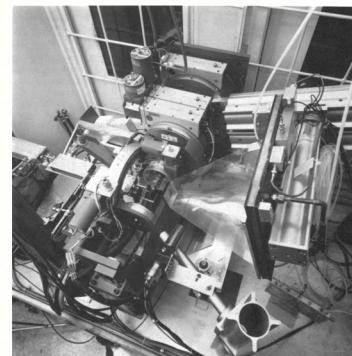
ction

fects
fects

higher

g
tion

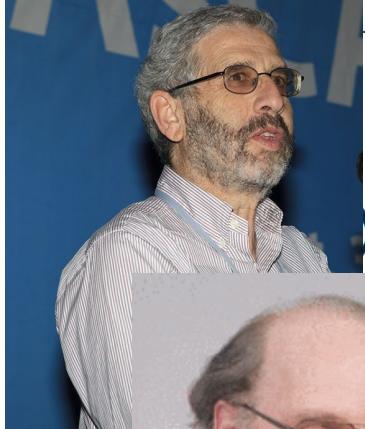


Foundations of the SSRL SMB Program – Early Science – Macromolecular Crystallography on BL1-5


Reprint Series
12 August 1988, Volume 241, pp. 806–811

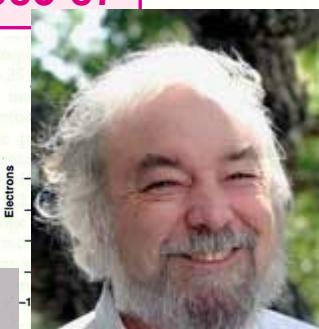
1985-87

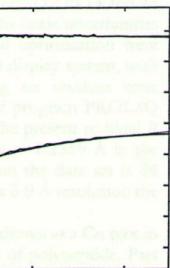
SCIENCE

Fig. 1. Energy dependence of the anomalous dispersion terms f'' and f' in the region of the CuK absorption edge. Values of f'' and f' are in electrons. Experimental values for f'' (heavy line) were obtained from x-ray fluorescence from a single crystal of CBP; ideal f'' values (thin line) for atomic Cu are from (58). Experimental values for f' are derived by numerical integration from the f'' spectrum with the Kramers-Kroenig relation; ideal f' values (thin line) are from H\"{o}nl theory (59). Derivation of the experimental f'' and f' values was performed with an in-house program DISCO (60).


Phase Determination by Multiple-Wavelength X-ray Diffraction: Crystal Structure of a Basic “Blue” Copper Protein from Cucumbers

J. MITCHELL GUSS, ETHAN A. MERRITT,* R. PAUL PHIZACKERLEY, BRITT HEDMAN,
MITSUO MURATA,† KEITH O. HODGSON, AND HANS C. FREEMAN


- Earliest success in high resolution “*de novo*” MAD phasing for structure solution using synchrotron radiation
- MAD data collection at SSRL BL1-5 with MWPC – 4 wavelengths – required 8 days
- Phasing of the 10-kD protein using native Cu atom gave excellent electron density map at ~2.5 Å resolution


Foundations of the SSRL SMB Program – Early Science – Macromolecular Crystallography on BL1-5

1985-87

SCIENCE

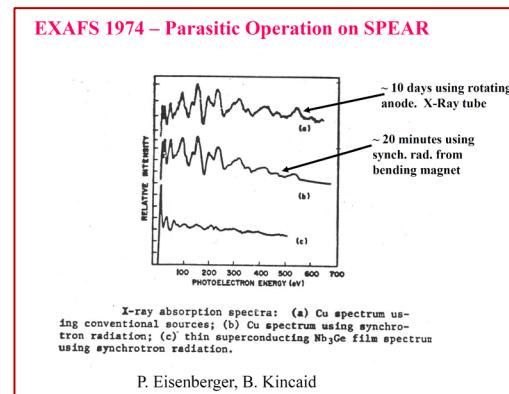
cess in high
“de novo” MAD
ng synchrotron

collection at SSRL
IWPC – 4

on by Multiple-W
Crystal Structure
rotein from Cuc

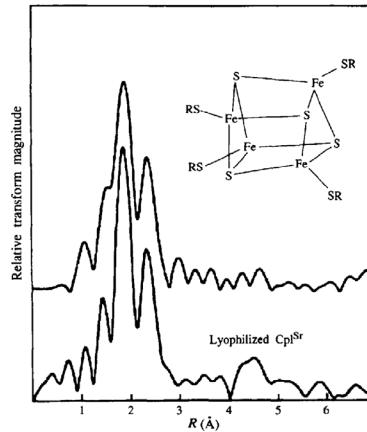
J. MITCHELL GUSS, ETHAN A. MERRITT,* R. PAUL PHIZACKERLEY,
MITSUO MURATA,† KEITH O. HODGSON, AND HANS C. E

- Phasing of
using native
excellent
resolution



Foundations of the SSRL SMB Program – Early XAS and Science

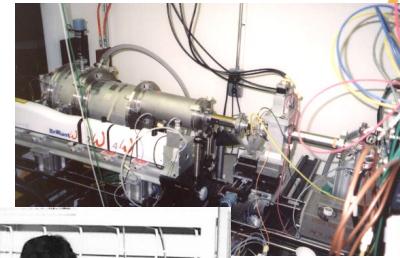
- SSRL's BL1-5 designed in cooperation with Bell Labs and Seattle Groups for XAS studies
- Many key players, including Bienenstock and Hunter, Doniach, Ashley and Kincaid, Bell Labs group (Eisenberger and collaborators) and Sayers, Lytle and Stern
- Earliest bio applications at BL1-5 were on Fe in hemoglobin and rubredoxin


Foundations of the SSRL SMB Program – Early XAS Bioscience

“The promise of EXAFS as an important new tool to investigate the structure and function in biological and chemical systems was quickly realized” (Doniach, Hodgson, Lindau, Pianetta and Winick, *J. Synch. Rad.* (1997) 380-395)

Studies by students and postdocs in my group with collaborators in 1976-79 period included:

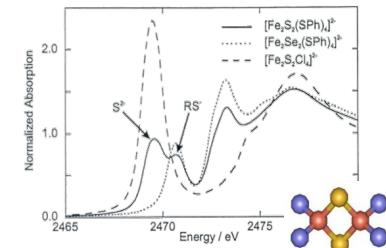
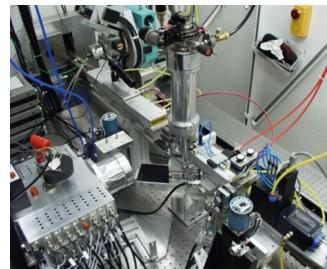
- First *de-novo* determination of metal cluster active site – nitrogenase
- Active site of cytochrome P-450 and details of key axial sulfur ligand to Fe
- Finding of unusually short Cu-S bond in the “blue copper protein” azurin



Steve Cramer, Tom Eccles, Tom Tullius and collaborators

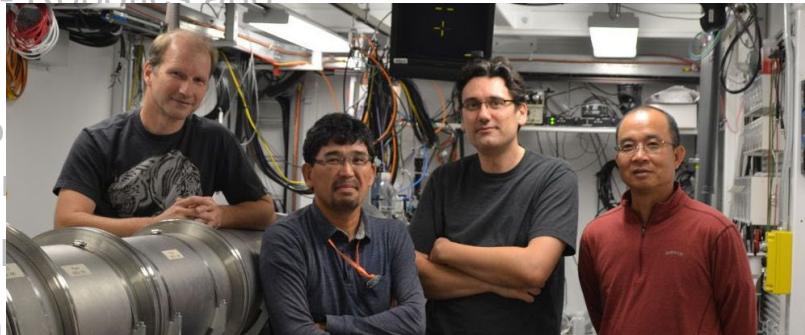
Foundations of the SSRL SMB Program – Early SAXS Science

- Biological SAXS/diffraction started in 1974 at SSRL – BL1-4 – Caltech – John Baldeschwieler, Nick Webb – frog muscle
- Early 80ties, a SAXS camera was built and used part time on BL2-1 as element of SSRL SMB's NIH NCRR-funded resource
- Early focus on anomalous scattering (Doniach, Fairclough, Miake-Lye, Stroud, Hubbard)
- In 1991, Hiro Tsuruta arrived to lead building the dedicated SAXS program in its current “home” BL4-2

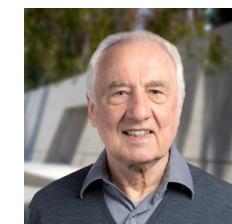

Selected Innovations from the SSRL SMB Program

- Macromolecular Crystallography - Robotics and Remote Access
 - Instruments fully automated with robotic sample handling at cryogenic temperatures (>1M samples handled)
 - Users perform experiments remotely (~95%)
- Dilute metalloprotein EXAFS with extension to tender energies
 - Stable beams, LHe sample environment, high-performing detector arrays for high-resolution structures
 - Ligand (S, Cl) as reporter for enzyme active sites
- Time-resolved solution x-ray scattering
 - Automation and robotics with millisec time resolution
 - Integrated microfluidics and sample purification



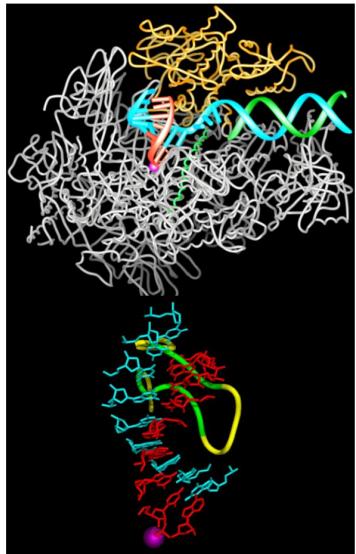
Selected Innovations from the SSRL SMB Program

• Macromolecular Crystallography - Robotics and

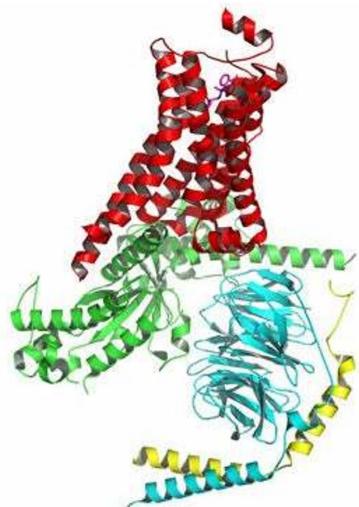


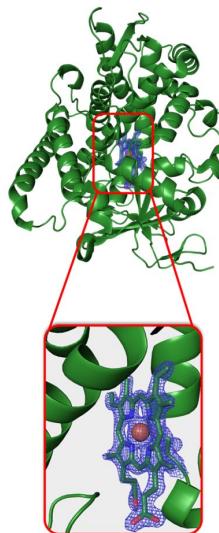
- Automation and robotics with millisec speed
- Integrated microfluidics and sample purification

Innovations from the SSRL SMB Program – SMB Beam Lines and Partnerships



- Beam Line 9 (1994)
 - Funded by DOE-BER, 1st to take x-rays from SPEAR3
 - Dedicated stations for MC and bio-XAS
- Beam Line 12-2, a “Molecular Observatory” (2008)
 - Partnership with CalTech and funding from the Gordon and Betty Moore Foundation
 - SSRL’s first high brightness undulator beam line for MC
- Beam Line 12-1 (2020)
 - Partnership with Scripps Research Institute and Stanford, funding from NIGMS donors and foundations
 - 2nd high brightness microfocus MC BL with most advanced x-ray area detector




Scientific Discovery from the SSRL SMB Program – Nobel Prizes

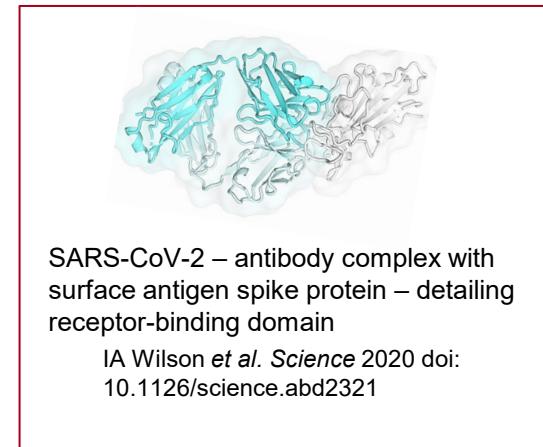
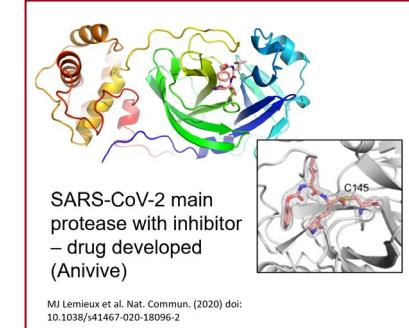
Roger Kornberg – 2006
- RNA Polymerase II

Brian Kobilka and Robert
Lefkowitz – 2012 – G-
Coupled Protein
Receptors

Frances Arnold – 2018 –
Directed Evolution

- Synchrotron-based macromolecular crystallography has contributed directly to 7 Nobel Prizes
- Two of these made extensive use of data from SSRL beam lines, and 2 others more limited use

The SSRL SMB Program – A Few Reflections

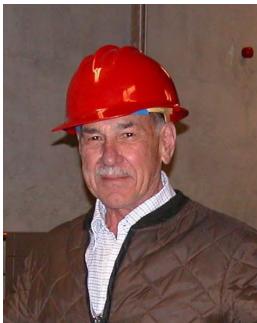



- SSRL SMB and its user community responded to the challenge during the COVID-19 pandemic to gain molecular insight into the SARS-CoV-2 virus, since 2020:

- About 50 SARS-CoV-2 related publications
 - Over 1500 fragments/inhibitors screened
 - More than 160 structures deposited in the Protein Data Bank
 - Contributed to 4 drugs in clinical trials
 - Partner in the DOE NVBL

- Looking back over the SMB program's 43 years:

- More than 3500 beam time proposals
 - More than 5800 pubs
 - Contributed to more than 1000 Ph.D. and M.Sc. theses



SPEAR3 - a 3rd Generation Light Source Dedicated to the SSRL Users from 2004 →

The SPEAR3 Era – Funding and the SPEAR3 Project

Tom Elioff,
Director

Bob Hettel,
Deputy Director

- Concept dates back to mid-1990ties, discussions with BES about a new SSRL light source, planning workshops, etc.
- Within an interagency working group framework, NIH proposed to support upgrades at SSRL and NSLS and an agreement was reached with DOE. News of project approval arrived on May 25, 1999
- Project was jointly funded (\$58M), starting June 1, 1999, and completed (CD4) November 24, 2003 (ahead of schedule and within budget)
- Superb organization - management of more than 400 people at SLAC contributing to the project
- Built upon SLAC and SSRL core competencies – especially PEP-enabled RF and vacuum system
- Removal of SPEAR2 and installation of SPEAR3 completed in only 7 months. No reportable accidents over life of the project

SPEAR3 – Installation

SPEAR3 - Transition from 2nd to 3rd Generation

SPEAR3 Installation Time Line

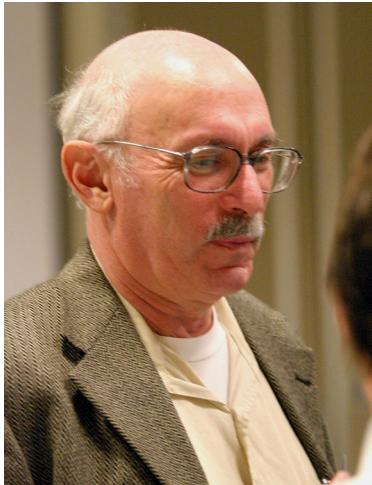
- Begin: Mar 31, 2003
- Remove SPEAR2: Mar 31 – May 8
- B118 renovation: Mar 31 – Oct 6
- Pour concrete floor: May 8 – June 20
- Install new monuments: June 20 – July 25
- Install mounting plates & holes: July 1 – Aug 11
- Install girders & straights: Aug 11 – Aug 29
- Install cable plant: Aug 25 – Oct 1
- Install vacuum hardware: Aug 18 – Oct 16
- Leak-check, pump-down: Sept 8 – Oct 20
- Final survey: Oct 20 – Oct 30
- Lock ring-Installation complete: Oct 30

Richard Boyce
Project
Engineer

- Complete removal of all SPEAR2 components (~1 million lbs of magnets and equipment)
- Preparation of tunnel with new concrete foundation and new survey monuments
- Installation of all SPEAR3 systems and components (about 1.25 million lbs)
- Completed on schedule in an amazingly short ~7 months

SPEAR3 – Installation

SPEAR3 - Transition

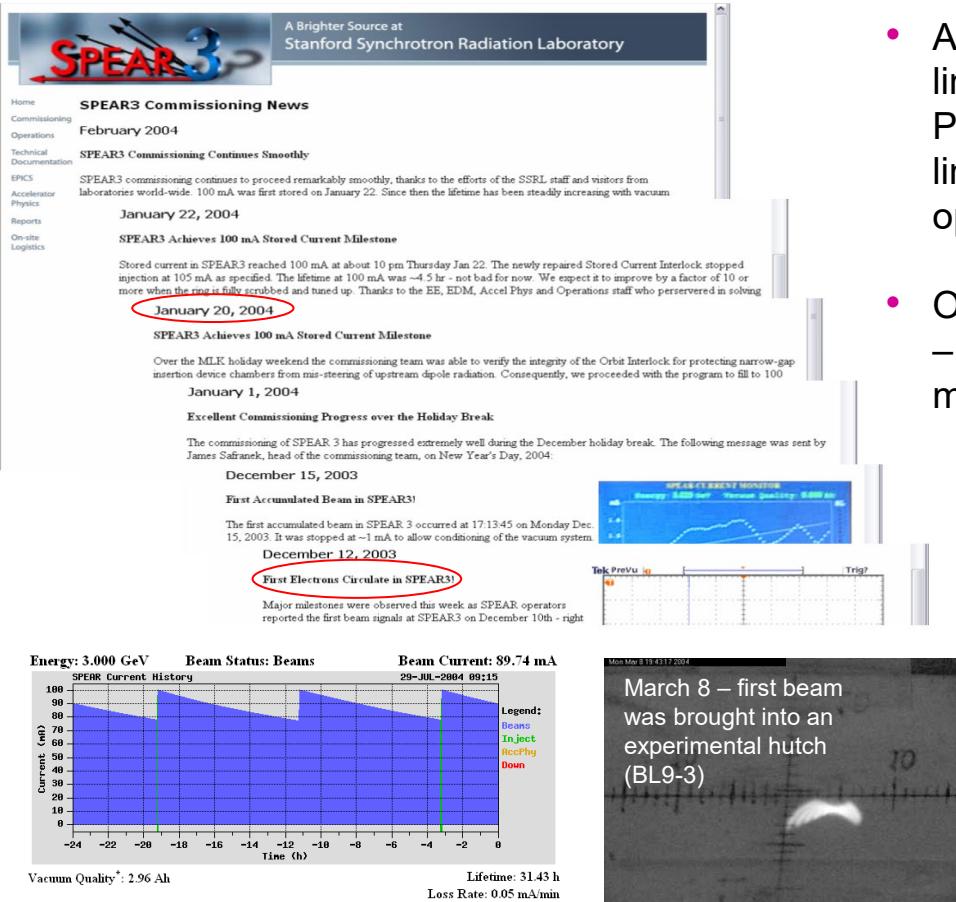


SPEAR3 - Transition

- Begin: Move equipment
- Remove equipment
- B118 removal
- Pour concrete
- Install new equipment
- Install magnet
- Install girder
- Install cables
- Install vacuum
- Leak-check
- Final survey
- Lock ring

- Complete transition of beamline and equipment)
- Prepare for beamline installation components
- Install beamline components (SPEAR3)
- Complete beamline installation

The SPEAR3 Era – Funding and the SPEAR3 Project



Bob Hettel,
Deputy Director

- Completed (CD4) NERSC contract
- Supplied - management of research project
- Built - SSRL core competency especially PEP-ium system
- Rebuilt - and Installation of particle accelerators over 100 completed in only 7 months

The SPEAR3 Era – Commissioning – A Spectacular Start!

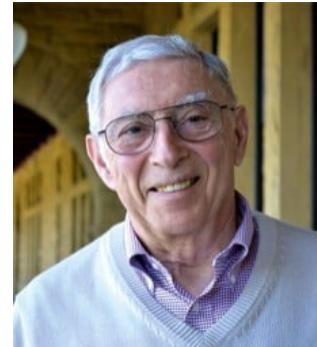
- As of **mid July, 2004** – 10 of 11 beam lines had been certified by Radiation Physics and opened. On these beam lines, 20 experimental stations were operational/scheduled

- On **July 31, 2004** – first user run ended – integrated delivery since first users in mid-March was 97.1%

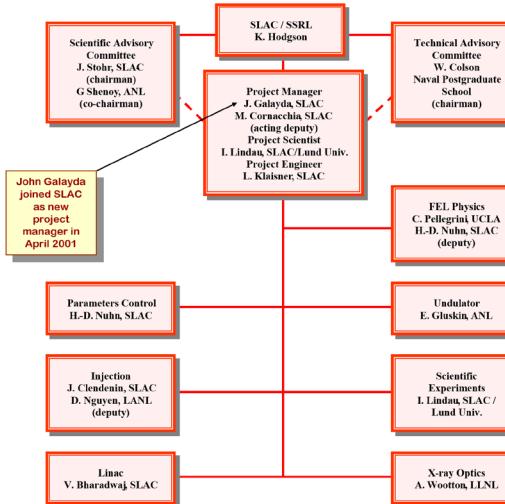

- On **January 29, 2004** – SLAC held a gala celebration to dedicate the new SPEAR3 accelerator
- On **August 13, 2004** – the SPEAR3 project team was recognized by a Secretary of Energy's Project Management Award

The SPEAR3 Dedication – January 29, 2004 – a New Era for SSRL

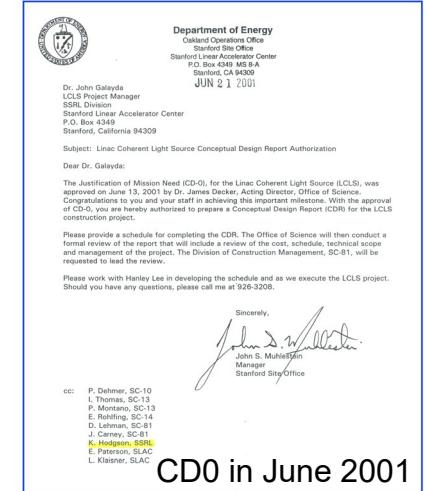
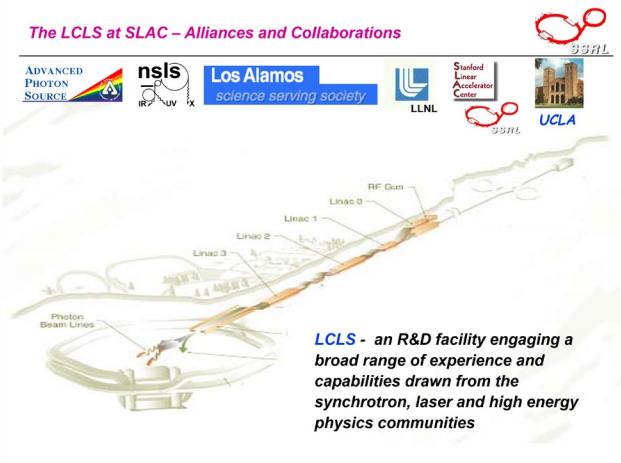
SPEAR3 provided SSRL and SLAC new opportunities for delivery of discovery science and capacity for growth and a very bright future for synchrotron science!



SPEAR3 - SLAC and Stanford Leadership – Vision and Commitment


- Stanford
 - John Hennessy and John Etchemendy and Artie Bienenstock
- SLAC
 - Directors Burt Richter and Jonathan Dorfan

SSRL - Building the Case and Organization for the LCLS

LCLS – the Project Team in 2001

- SSRL scientists and collaborators began to develop the case for an XFEL based on the SLAC Linac in the early-to-mid 1990ies (Artie's talk)
- SSRL provided the organizational infrastructure within SLAC to move from a concept to a project – including interactions with BES/BESAC and overseeing an LCLC SAC

The LCLS at SLAC – Alliances and Collaborations

Building the Foundation for the LCLS – The Scientific Case

Joachim Stör: First Experiments Document (Sept. 2000)

Members of the LCLS Scientific Advisory Committee (SAC)	
Phil Bucksbaum	Univ. of Michigan
Roger Falcone	Univ. of California, Berkeley
Rick Freeman	Univ. of California, Davis
Andrea Freund	European Synchrotron Radiation Facility
Janos Hajdu	Uppsala Univ.
Jerry Hastings	National Synchrotron Light Source
Richard Lee	Lawrence Livermore National Laboratory
Ingolf Lindau	Stanford Synchrotron Radiation Laboratory
Gerd Materlik	HASYLAB, DESY
Simon McPhee	Univ. of Chicago
Keith Nelson	Massachusetts Institute of Technology
Francesco Sette	European Synchrotron Radiation Facility
Sunit Sinha	Advanced Photon Source
Brian Stephenson	Argonne National Laboratory
Z.X. Shen	Stanford Univ.
Gopal Shenyu	Advanced Photon Source (Co-Chairman)
Joachim Stör	Stanford Synchrotron Radiation Laboratory (Chairman)

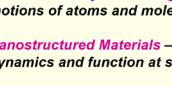
- Initiated by SSRL Director Keith Hodgson
- Developed by international team of ~ 50 scientists
- Approved by LCLS SAC

Team leaders and BESAC talks:

Femtochemistry	Dan Imre, BNL	Plasma and Warm Dense Matter	Richard Lee, LLNL
Nanoscale Dynamics in Condensed Matter	Brian Stephenson, APS	Structural Studies on Single Particles and Biomolecules	Janos Hajdu, Uppsala Univ.
Atomic Physics	Phil Bucksbaum, Univ. of Michigan	X-ray Laser Physics	Jerry Hastings, BNL

14

Stanford Linear Accelerator Center
Stanford Synchrotron Radiation Laboratory


LCLS Science Program – New Opportunities for Discovery

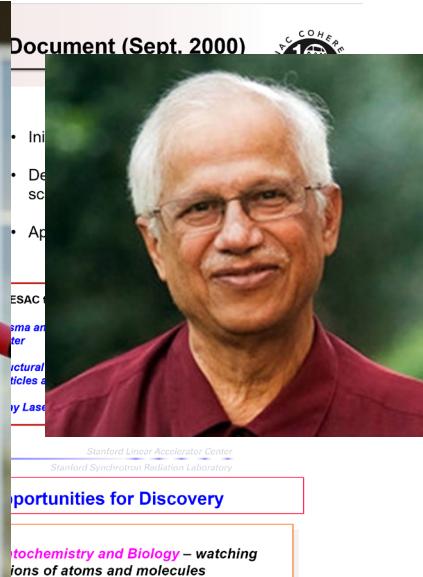
Femtochemistry and Biology – watching motions of atoms and molecules

Nanostructured Materials – structure dynamics and function at sub nm scales

Atomic Physics – exploring how electrons move

Plasmas and Warm Dense Matter – creating and studying exotic states of matter

Imaging of Nanoclusters and Single Biomolecules – structures without crystals



X-ray Laser Physics – pushing the boundaries of x-ray properties

Program recommended by the LCLS SAC and being developed by SSRL/LCLS working with an international team of scientists working with accelerator and laser physics communities

- LCLS Science Advisory Committee charged to develop the initial science program
- Engaged an international team of experts
- The resulting “First Experiments Document” was completed in September, 2000 and presented to DOE BESAC in October, 2000
- Received unanimous endorsement of BESAC to prepare and submit the formal LCLS CDR
- CD0 was approved in June, 2001
- Led to near and far hall experimental halls concept
- Catalyzed the development of the Sub-picosecond Photon Source (SPPS) and the case for the SLAC/Stanford PULSE Institute
- Also organized a Technical Advisory Committee (TAC)

Building the Foundation for the LCLS – The Scientific Case

Nanostructured Materials – structure, dynamics and function at sub nm scale

Atomic Physics – exploring how electrons move

Plasmas and Warm Dense Matter – creating and studying exotic states of matter

Imaging of Nanoclusters and Single Biomolecules – structures without cryo

X-ray Laser Physics – pushing the boundaries of x-ray properties

Program recommended by the LCLS SAC and being developed by SSRL/LCLS working with an international team of scientists working with accelerator and laser physics communities

And 50 Years! Thanks to the Vision, Commitment and Effort of so Many Dedicated SSRL Staff

